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Abstract
The change in allele frequencies within a population over time represents a fundamental process of
evolution. By monitoring allele frequencies, we can analyze the effects of natural selection and
genetic drift on populations. To efficiently track time-resolved genetic change, large experimental or
wild populations can be sequenced as pools of individuals sampled over time using high-throughput
genome sequencing (called the Evolve & Resequence approach, E&R). Here, we present a set of
experiments using hundreds of natural genotypes of the model plant Arabidopsis thaliana to
showcase the power of this approach to study rapid evolution at large scale. First, we validate that
sequencing DNA directly extracted from pools of flowers from multiple plants -- organs that are
relatively consistent in size and easy to sample -- produces comparable results to other, more
expensive state-of-the-art approaches such as sampling and sequencing of individual leaves.
Sequencing pools of flowers from 25-50 individuals at ~40X coverage recovers genome-wide
frequencies in diverse populations with accuracy r > 0.95. Secondly, to enable analyses of
evolutionary adaptation using E&R approaches of plants in highly replicated environments, we provide
open source tools that streamline sequencing data curation and calculate various population genetic
statistics two orders of magnitude faster than current software. To directly demonstrate the
usefulness of our method, we conducted a two-year outdoor evolution experiment with A. thaliana
to show signals of rapid evolution in multiple genomic regions. We demonstrate how these
laboratory and computational Pool-seq-based methods can be scaled to study hundreds of
populations across many climates.
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Introduction

How fast a species can adapt to different environments from standing within-species genetic variation
is a burning question in evolutionary ecology and genetics. A powerful approach to study
environment-driven adaptation is provided by field experiments in which multiple genotypes of a
species are grown together and traits and fitness are measured (Clausen et al., 1941; Kingsolver et
al., 2001; Savolainen et al., 2013). Such experiments, typically conducted within a single generation,
have allowed measuring the strength of natural selection over phenotypic traits or genetic variants,
which is often strong (Exposito-Alonso et al., 2019; Kingsolver et al., 2001; Siepielski et al., 2017;
Thurman and Barrett, 2016). Such studies often cannot measure the response to
selection—evolutionary change—of a population, as this depends on the genetic trait architecture
(Bergland et al., 2014; Walsh and Blows, 2009) and environmental fluctuation over time (Bergland et
al., 2014), which has led to inconsistent long-term trait changes in populations (Merilä et al., 2001).
Highly-replicated multi-year experiments where phenotypes and genomic variation are tracked
would be ideal to study these evolutionary forces and robustly test the predictability of evolution
(Grant and Grant, 2002; Nosil et al., 2018) .

An opportunity to conduct multi-generational experiments to study evolution over time is
the so-called “Evolve & Resequence” (E&R) approach (Schlötterer et al., 2015; Turner et al., 2011).
E&R experiments leverage cost-effective, high-throughput sequencing to study the frequency of
genome-wide variants or genotypes of a population over time. Such frequency trajectories capture
evolutionary forces such as drift and natural selection in action. This approach has been popular in
bacterial and animal model systems such as Escherichia coli and Drosophila melanogaster (Bergland
et al., 2014; Good et al., 2017; Schlötterer et al., 2014). In the traditional genome sequencing
approach, each individual is processed independently into one DNA sequencing library. The most
common E&R approach is Pool-Sequencing, where multiple individuals sampled from the same
population are processed into a single DNA sequencing library (Futschik and Schlötterer, 2010).
While individual haplotypes are lost in the Pool-Seq approach, population-level allele frequencies are
obtained in a cost-effective manner (Schlötterer et al., 2014). The Pool-Seq approach has been
typically applied on a single population over time to study rapid selective sweeps (Iranmehr et al.,
2017) and quantitative trait evolution (Endler et al., 2016). Parallel E&R experiments across large
environmental gradients could enable the study of population (mal)adaptation across present
climates and inform future responses (Capblancq et al., 2020). Combining Pool-Seq experiments,
which subject the same starting genetic variation to an environmental condition, with landscape
genomic approaches that aim to detect climate-driven natural selection or sweeps in the presence of
population confounders (Günther and Coop, 2013; Hancock et al., 2011; Pfenninger et al., 2021),
could be a powerful approach to depict how climate impacts evolutionary genetic processes leading
to adaptation and extinction.

To enable globally-distributed E&R experiments to study climate adaptation, two key
innovations are necessary beyond lowering sequencing costs: making library preparation scalable to
thousands of whole-genome samples, and standardizing computational genomics software that allow
researchers to analyze thousands of population samples, akin in speed to single-genome data
structures and libraries such as HTSlib (Bonfield et al., 2021). To achieve the first goal, we reduced
the preparation time (to ~2 h/96 pooled samples) and cost (to ~$3/pooled sample) (Rowan et al.,

2

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.477408doi: bioRxiv preprint 

https://paperpile.com/c/kaWY0K/DM77+8Izk+w6Ux
https://paperpile.com/c/kaWY0K/DM77+8Izk+w6Ux
https://paperpile.com/c/kaWY0K/DM77+LppI+4LDO+xooU
https://paperpile.com/c/kaWY0K/DM77+LppI+4LDO+xooU
https://paperpile.com/c/kaWY0K/Fg2Ga+Tz4S
https://paperpile.com/c/kaWY0K/Fg2Ga
https://paperpile.com/c/kaWY0K/Fg2Ga
https://paperpile.com/c/kaWY0K/J6PL
https://paperpile.com/c/kaWY0K/wAcs+ilO3
https://paperpile.com/c/kaWY0K/WHpD+OxQK
https://paperpile.com/c/kaWY0K/Z7kqw+zMjwh+Fg2Ga
https://paperpile.com/c/kaWY0K/Z7kqw+zMjwh+Fg2Ga
https://paperpile.com/c/kaWY0K/XdcU
https://paperpile.com/c/kaWY0K/Z7kqw
https://paperpile.com/c/kaWY0K/nTBFD
https://paperpile.com/c/kaWY0K/nTBFD
https://paperpile.com/c/kaWY0K/ogeU
https://paperpile.com/c/kaWY0K/hV0m
https://paperpile.com/c/kaWY0K/TSc2+bBza+2yHB
https://paperpile.com/c/kaWY0K/rePZ
https://paperpile.com/c/kaWY0K/JG4P
https://doi.org/10.1101/2022.02.02.477408
http://creativecommons.org/licenses/by-nc/4.0/


Czech, Peng, et al. | Monitoring rapid evolution of plant populations at scale with Pool-Sequencing | Tools & Resources

2015) for genomic DNA library preparation using Tn5 transposase (Baym et al., 2015; Rowan et al.,
2015), and tested these libraries for Pool-Sequencing approaches. For the second goal, we developed
a new C++ implementation for fast computing of population genetic statistics for Pool-Seq,
grenedalf, (Czech and Exposito-Alonso, 2022), based on the original Perl-based PoPoolation
software (Kofler et al., 2011a, 2011b). Our implementation now offers ~100-fold speed
improvements, allowing analyses of thousands of pooled libraries in minutes rather than days (Czech
and Exposito-Alonso, 2022). These methods can be applied to any organisms, and we demonstrate
the utility and power of the approach with the diploid annual plant Arabidopsis thaliana. We
showcase our methods’ efficacy for studying rapid adaptation in the context of plant evolutionary
ecology, a field that typically uses individual-based methods such as common garden experiments and
within-generation fitness assays to understand natural selection in different environments (Anderson
and Wadgymar, 2019; Brachi et al., 2010; Exposito-Alonso et al., 2019; Fournier-Level et al., 2011;
Lovell et al., 2021; Lowry et al., 2009; Monnahan et al., 2020) .

In this article, we describe our E&R design, Pool-Seq protocols, and computational
approaches for a set of four experiments using natural genotypes of A. thaliana. We provide evidence
that our simple and affordable large-scale experimental setup can generate allele frequency data with
quality comparable to established small-scale approaches. In particular, we sequenced a mixture of
seeds pooled from several hundreds of A. thaliana genotypes from the 1001 Genomes Project (1001
Genomes Consortium, 2016), which can be used as a founder population for multiple evolution
experiments (Experiment 1). We further constructed sequencing libraries of exactly two inbred
genotypes using the Pool-Seq approach to assess the deviation in the allele frequencies from the
expected 50% frequencies at positions where the genotypes differ (Experiment 2). We conducted
varying poolings of genotypes and tissue types (i.e., leaf versus flower) to describe the effect of
individual pooling and coverage in allele frequency inferences (Experiment 3). We ran a pilot “E&R
common garden” experiment to test our methods in realistic outdoor settings and analyzed whether
signals of rapid evolution could be detected in a few generations (Experiment 4).

A Snakemake-based pipeline to streamline and parallelize frequency
calling in Pool-Sequencing

To tackle the large amount of sequencing data that is needed to comprehensively test for rapid
evolution across environments with Pool-Sequencing, we implemented grenepipe (Czech and
Exposito-Alonso, 2021), a pipeline based on the Snakemake workflow management system (Köster
and Rahmann, 2012; Mölder et al., 2021), to process raw sequence data into variant calls and allele
frequencies. We used grenepipe to process the data from all our four experiments described
below. Unless otherwise specified, we used grenepipe v0.6.0, with the following tools in the
pipeline: trimmomatic (Bolger et al., 2014) for read trimming, bwa mem (Li and Durbin, 2009) for
mapping against the reference genome, and samtools (Li et al., 2009) for working with bam and
pileup files. We furthermore employed several quality control tools that are built into grenepipe
to ensure that our sequence data is of sufficient quality (Andrews and Others, 2017; Ewels et al.,
2016; Li et al., 2009; Okonechnikov et al., 2016). Note that grenepipe furthermore offers variant
calling, using tools such as BCFtools (Li, 2011), freebayes (Garrison and Marth, 2012), and the GATK
HaplotypeCaller (McKenna et al., 2010). The exact tools and parameter settings used in each run of
the pipeline are available at https://github.com/lczech/grenepilot-paper.
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The grenepipe automatization of single variant polymorphism (SNP) and their frequency
calling allows us to test a number of variant filters and compare them in a standardized fashion.
Specifically, we focused on quality controls related to:

1. Base quality filters based on Illumina PHRED scores.
2. Mapping quality filters to reduce the likelihood of false positive variant calls. These follow

essentially the same curated filters of the PoolSNP pipeline used in the “Drosophila
Evolution over Space and Time” resource (Kapun et al., 2021, 2020) .

3. Free discovery of genetic variants vs utilizing only 11,769,920 biallelic SNPs (out of
12,883,854) previously discovered in individual strains from the 1001 Genomes project (1001
Genomes Consortium, 2016) or a high-quality subset of the same genome set of 1,353,386
biallelic SNPs (Exposito-Alonso et al., 2019) .

4. Coverage filters and minimal alternative allele counts to reduce sampling noise and
sequencing errors (Kapun et al., 2021; Lynch et al., 2014).

The experiments described below make use of these filters, unless otherwise specified.

A new efficient command line tool for population genetic statistics
using Pool-Sequencing

To efficiently analyze Pool-Seq allele frequency data for thousands of population samples, we
developed a C++ based command line tool called grenedalf (Czech and Exposito-Alonso, 2022),
which is able to parse .bam/.sam/.vcf/.pileup/.sync files, analyze allele counts and frequencies on the
fly, and compute population genetic statistics implemented in the broadly used PoPoolation1 and
PoPoolation2 (Kofler et al., 2011a, 2011b) along with new extensions of several unbiased statistics
derived here and elsewhere (Hivert et al., 2018). The Supplemental Mathematical Appendix
includes mathematical derivations and motivation of various unbiased corrections of Watterson’s θW ,
π , Tajima’s D, and FST that account for two main sources of noise in Pool-Seq: the finite number of
individuals pooled (n), and the finite coverage per base pair along the genome (C) (see cartoon Fig.
S1). These are two nested Binomial samplings, where, for a polymorphic site in a population, we first
have a chance of sampling k individuals carrying each occurring allele out of all n individuals pooled,
which is proportional to the true allele frequency fA in the population. Then, after DNA sequencing,
we have a chance of observing c reads in a pool of C (coverage) reads, which is proportional to the
frequency of each allele in the pooled sample of individuals (k/n).

The first parameter that we are interested is the genetic diversity, nucleotide diversity, or
observed heterozygosity, for a given SNP in the genome, expressed as:

, (eq. 1)

where c is the number of reads presenting each of the four possible nucleotide bases
(τ ∊ ACTG), and the ratio represents the raw sample allele frequency fτ = cτ / C, represents the raw
sample allele frequency. Our software corrects such diversity parameters using Bessel’s correction
for finite coverage. An additional correction of individual sample size n/(n-1) may also be applied,
although can be done for all genome-wide values computed by grenedalf in downstream
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processes. Such a metric of diversity could be used to detect islands of low diversity appearing over
time in E&R, which could be indicative of a selective sweep.

The second parameter of most interest is allele frequency differentiation between two spatial
or temporal population samples, FST , for which there are multiple definitions (Supplemental
Mathematical Appendix). Following the same notation as the nucleotide diversity, Nei’s FST can
be defined following the approach of PoPoolation2 as:

, (eq. 2)

where the within, between, and total diversity can be calculated based on frequencies for two
populations, coverages, and number of individuals pooled (indicated with subscripts (1) (2) for the
two populations, and (T) when combined, for which the coverage and individuals take the minimum
of the two populations) as:

. (eq. 3)

The above observed metrics are most useful for inferring processes within E&R experimental
populations with known founders. When using Pool-Seq for natural populations, it may also be
helpful to infer population parameters such as the population mutation rate θ (4Ne μ) from empirical
diversity estimates such as π while accounting for Pool-Seq errors. The general strategy described in
PoPoolation (Kofler et al., 2011a, 2011b) and reimplemented grenedalf is described in detail in
the Supplemental Mathematical Appendix.

Experiment 1: Sequencing a seed mixture of 231 genotypes to
characterize a diversity panel

Rationale: In this experiment, we established a genetically diverse panel of A. thaliana natural
accessions. We sequenced the seed mix of this panel to assess the ability of Pool-Seq to correctly
recover genome-wide allele frequencies. This was the first step to use the seed pool for further E&R
experiments (see below).

Setup: The founder seed mix for this experiment was sourced from the seeds of 231 genotypes,
229 of which are part of the 1001 Genomes Project (2016) and available from the Arabidopsis
Biological Resource Center (ABRC) under accession CS78942 (https://abrc.osu.edu/stocks/465820),
while the remaining 2 genotypes were sourced through the Israel Plant Gene Bank
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(https://igb.agri.gov.il/) under accession numbers 24208 and 22863 (Dataset S1). Seeds were pooled
at roughly equal yet variable proportions based on weight (See Dataset S1 for estimated numbers
of seeds per ecotype). Note that differences in seed proportions are intendedly captured by directly
sequencing seeds below.

Analysis: Eight tubes, each containing about 2,470 seeds (estimated based on weight) from the
founder seed mix (Table S1) were homogenized using a FastPrep-24 (MP Biomedicals, Irvine, CA,
USA). DNA extraction was done using a Qiagen DNeasy Plant Mini kit (Hilden, Germany)
(Supplemental Appendix I: DNA extraction). One TruSeq library was prepared from each
DNA extract. The eight TruSeq libraries were multiplexed and sequenced together on one lane of a
HiSeq 3000 sequencer (Illumina, San Diego, California, USA). The total sequencing output was
9.54×1010 base pairs and the average genome-wide coverage was ~500X across all seed pool
sequencing data (Fig. S5). Raw sequence data were processed with our grenepipe workflow
(Czech and Exposito-Alonso, 2021) to trim and map the reads against the A. thaliana TAIR10
reference genome (Berardini et al., 2015; Lamesch et al., 2012). Subsequently, using our grenedalf
tool, we calculated the raw minor allele frequencies (MAF) at each biallelic position, based on
bam/pileup files counting the ratio of reads containing either reference or alternative alleles (Fig.
S1). Since users of Pool-Seq may utilize popular computationally efficient variant callers used in
individual sequencing, we also ran grenepipe with three different variant callers: BCFtools (Li,
2011), freebayes (Garrison and Marth, 2012), and the GATK HaplotypeCaller (McKenna et al., 2010).
These tools are not primarily designed for calling variants and their frequency from Pool-Seq data,
but the resulting VCF file of each caller can be turned into a frequency table by extracting the Allelic
Depth (“AD”) format field at each genome position for each sample, a process also implemented in
grenedalf. We also tried to run GATK HaplotypeCaller and freebayes using the average pool size
as the ploidy options (--ploidy 2470 and --ploidy 2470 --pooled-discrete,
respectively, as well as --pooled-continuous in freebayes; note that A. thaliana is diploid
although inbred, but pooling ~2,500 seeds would make the DNA library highly ploid from a
computational point of view). These analyses resulted in prohibitively long runtimes even in cluster
environments (GATK HaplotypeCaller) and large memory usage (freebayes), demonstrating these
tools’ limited capabilities for analyzing large datasets and large pool sizes. We hence ran the three
callers with default ploidy of 2 to study their artifacts in Pool-Seq applications, assuming that other
researchers may be required to resort to these default settings.
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Fig. 1 | Direct sequencing of experimental founder seeds captures the 1001 Genomes variation.
(A) Comparison of minimum allele frequencies directly estimated from ratios of bases in reads from sequencing the seed
mix (x-axis) and allele frequencies calculated in silico from the 1001G VCF subsetted to the genotypes shared with the
seed mix (y-axis) (B) Comparison of allele frequencies from the seed mix likewise directly calculated from ratios of bases in
reads (x-axis) vs from the allelic depth (“AD”) VCF field after calling SNPs using GATK with default settings (y-axis). Yellow
lines indicate y=x line.

Results: We conducted two comparisons, the first to quantify how well direct sequencing of pools
of seeds captured the variation found in the 229 genotypes from the 1001 Genomes, and the second
to study the technical artifacts generated by diploid SNP callers.

The first comparison is based on the raw frequency of alternative allele counts divided by
coverage in the seed sequencing bam/pileup files against the same SNPs using the 229 columns in the
1001 Genomes VCF table corresponding to the genotypes mixed at roughly equal proportions in the
seed mix (comparisons conducted with 1,353,386 bona fide SNPs with minimum alternative allele
count >2). This yielded a high correlation and low deviation from the y=x correspondence line (Fig.
1A, Pearson’s r = 0.982, SD = 0.0214; for unfiltered comparison see Fig. S3A-B). Of note,
comparing seed allele frequencies to all 1,135 individuals from the 1001 Genomes (i.e. not only the
229 included in the seed mix) shows a high density of alleles that are at low-to-intermediate
frequencies in the 1001 Genomes but at low frequency in the seeds (Fig. S3A,C), likely indicative of
a rare and highly divergent population group, the so-called relict accessions, comparatively
underrepresented in our Pool-Seq subset of the larger set of 1001 Genomes (1001 Genomes
Consortium, 2016). All in all, we were able to recover nearly all of the SNP variation present in the
229 individual founder genotypes with our Pool-Seq approach.

The second comparison assessed the variation in allele frequency recovery from raw allele
counts in bam/pileup files and standard diploid SNP callers. This revealed that certain tools generated
frequency estimates upwardly or downwardly biased compared to the raw allele fraction from
bam/pileup files (Fig. S6-10). This bias, especially for alleles found at low frequency (<20%), appears
most dramatic in GATK HaplotypeCaller in its default diploid likelihood mode (Fig. 1B, Fig. S6-10).
Further, very low frequency alleles (<4%) appear missing (Fig. S11). GATK, which is tuned for
human SNP calling, aims to call genetic variants that fit the reference homozygote, heterozygote, or
alternative homozygote scheme, and utilizes local genome realignment information to reject certain
reads, which may be causing unexpected biases (see asymmetry in low-frequency SNPs in Fig. 1B,
where only 1,353,386 bona fide SNPs with minimum count >2 were used). While correlations
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between raw allele frequency and SNP calling-based allele frequencies are typically high (r >0.99),
deviations can be substantial without filters. For instance, the standard deviation of differences
between GATK and raw allele ratio frequencies suggests deviations higher than 10%
(SDGATK=0.094-0.204 depending on coverage cutoffs, Fig. S6-8). BCFtools and freebayes appeared
less biased and more consistent (SDBFCtools=0.051-0.156 and SDfreebayes=0.043-0.097, Fig. S6-8). Based
on these results, we recommend, despite their computational capacity and popularity, to avoid SNP
callers designed for individual sequencing for Pool-Seq data. In conclusion, grenedalf offers
computational speed, generates frequency tables from raw sequencing reads, allows for data
manipulations such as subsets or sample comparisons, and implements quality filters shown to
provide appropriate frequency estimates if evaluated in a set of bona fide SNPs (see Experiment 2
below) (Guirao-Rico and González, 2021) .

Experiment 2: Two-genotype analysis to understand biases of DNA
contribution to pooled samples and sequencing noise

Rationale: One important assumption in population inferences based on Pool-Seq data is that each
individual contributes an equal amount of sequencing reads. However, the deviation in DNA
contribution by pooling organs from different individuals or entire individuals has not been tested in
A. thaliana or other model plant systems (although it is common practice in D. melanogaster to
directly pool whole flies, see for instance Tilk et al. (2019)). Instead, a typical approach in many
state-of-the-art Pool-Seq experiments is to extract DNA separately from different individuals and
subsequently pool equal amounts of DNA, an unfeasible approach when studying thousands or tens
of thousands of individuals (Gautier et al., 2013; Rellstab et al., 2013; Roda et al., 2017). Whether
flower organ sizes, such as those described in A. thaliana across ecotypes (Juenger et al., 2000), or
cell ploidy differences via endoreplication in sepals (Robinson et al., 2018) have an effect in
differential DNA contributions when pooling flowers, is unknown and could be manifested in
deviations of allele frequencies. In Experiment 2, we sequenced a pool of two A. thaliana genotypes
sampling one flower each (i.e., the smallest possible pool size n=2) and tested it against carefully
quantified and pooled DNA isolates of the same two genotypes to assess the variation in DNA
contribution.

Setup: To quantify the deviation in DNA content when pooling two flowers from distinct genotypes,
we sequenced three replicates of two flowers each. The first genotype was the laboratory inbred
strain Col-0, which was the type strain used to assemble the reference genome of A. thaliana
(Lamesch et al., 2012). The second, a natural accession (inbred in greenhouse propagations) from the
1001 Genomes project (1001 Genomes Consortium, 2016), was RUM-20 (#9925), which differs
from Col-0 by 1,007,560 SNPs according to the 1001 Genomes data (note that the average
genotypic difference of any two genotypes is 400—600K SNPs; we hence picked a relatively
divergent accession). These two ecotypes did not show visible flower size differences, but were not
chosen based on their flower size differences. To compare the pooled flower method with the
conventional method where DNA is pooled at equal proportions, we extracted DNA from a leaf of
a Col-0 individual and a leaf of a RUM-20 individual, and generated three DNA replicates via equal
pooling by DNA concentration before library preparation (Fig. 2A, Table S2). DNA was extracted
with the CTAB method and processed into whole-genome sequencing libraries using a modified
Nextera protocol (Supplemental Appendix I: DNA extraction and Library preparation).
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Fig. 2 | Experimental design (Exp. 2) to test the relative contribution to DNA sequencing output
(A) Flower and leaf tissues were sampled from two genotypes, Col-0 and RUM-20. Three replicates of two flowers were
collected (the Pool-Seq method) while leaves were collected individually (conventional method). Leaf DNA was pooled at
equal quantity to create three replicates of DNA input for library preparation. (B) Distribution of allele frequencies in one
of the three replicates of the directly extracted and whole-genome sequenced 2-flower pools (see all replicates in Fig. S14;
allele frequencies of SNPs that passed mapping quality filters, had a minimum minor allele count >2, and were present in
the 1,353,386 bona fide SNPs). (C) The equivalent of (B) for two separate leaf DNA extracts carefully pooled at equal
concentration.

Analysis: Assuming that both pooled individuals from the two inbred lines are indeed homozygous,
one would expect polymorphic alleles to be at exactly 50% proportion if the tissues of both
individuals contributed exactly equal amounts of DNA. Mean deviations from 50% would indicate
differences in DNA content and/or mapping bias if deviations are systematic for one genotype. In
addition, variations in the extent of deviation across replicates would indicate sampling noise due to
limited DNA sequencing coverage. To test this, we again trimmed and mapped genome-wide reads
with our grenepipe workflow, and computed frequencies from bam/pileup files with grenedalf,
as described in Experiment 1.

Results: This proof-of-concept analysis provided a number of clues on the power and potential
biases of Pool-Seq to study population evolution in real time. Firstly, as the expected frequencies of
polymorphic sites are around 50%, we could detect many low frequency alleles that are most likely
artifacts (Fig. 2B-C). This could not be done while sequencing large populations of seeds or flowers
because we expect many true low frequency alleles. We show that a lack of filters for coverage,
mapping quality, and most importantly, minimum alternative allele count, leads to a majority of calls
of polymorphic sites likely representing artifacts (e.g., 90% of unfiltered SNPs may be false positives,
see Fig. S15A; these filters were applied in all experiments). We therefore implemented stringent
filters for mapping quality (samtools option `-q 60`), base quality (option `-Q 30`), and matching
of forward/reverse read mapping (options `--rf 0x002 --ff 0x004 --ff 0x008`), and
minimum allele counts in the bam/pileup file of reads (MAC>2). In combination with a filter for the
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bona fide 1,353,386 SNPs, these filters led to the expected distribution of allele frequencies around
50% with some of the remaining variation likely explained by the binomial sampling variance caused
by limited coverage (Fig. 2B-C, Fig. S13). Third, we could show that the deviation of average allele
frequencies from 50% was small (2.2% frequency, Fig. S14D-F) and of similar magnitude as the
deviation measured in the DNA pools generated from DNA isolates of equal concentration (1.5%,
Fig. S14A-C). This suggests that uncontrolled factors (such as flower size, endoreplication and
ploidy, differential tissue grinding) minimally affect DNA contributions of flowers, and that their
magnitude is comparable to variable DNA contributions from individual samples even after DNA
normalization. Such small deviations become statistically diluted when pooling large numbers of
individuals (Lynch et al., 2014). For instance, for 100 flowers, errors would range from 0.0004 to
0.1% for allele frequencies from 1% to 50%. This is in agreement with previous Pool-Seq experiments
with whole D. melanogaster flies, which indicates that allele frequency estimation per population
requires 100 individuals at 50X coverage for virtually-perfect allele frequency retrieval (Gautier et al.,
2013). In summary, the Pool-Seq approach using large numbers of A. thaliana flowers, sampling one
flower per individual, should provide highly reliable allele frequency inferences in E&R experiments.

Experiment 3: Combinatorial experiments of pool sizes and tissue
type sequencing to determine optimal sampling schemes

Rationale: In this experiment, we evaluated the ability of Pool-Seq to recover correct allele
frequencies from pooled samples made up of 5 to 100 flowers (one per individual) and leaves
sampled from A. thaliana plants. We studied whether (A) individual leaf DNA extraction and library
preparation with equal DNA input and (B) pooled flower DNA extraction and library preparation
without DNA normalization produce comparable population estimates.

Setup: We grew a mixture of seeds of 231 genotypes mixed roughly at equal proportions (Dataset
S1) in 2,500 pots with one individual each (replicating similar conditions of large evolving populations
outdoors, see Experiment 4). We then selected 50 random plants for our test. Flowers were
sampled from different subsets of these 50 plants to assess the effect of increasing the number of
individuals randomly sampled: 5, 10, 25, 50, and 100 flowers (Fig. 3; for 100 flowers, we included 2
flowers from each of the same 50 plants). For the same plants for which flowers were collected, we
also removed, and separately stored, one leaf per plant for independent DNA extraction.

Tissue grinding, DNA extraction and library preparation steps are described in
Supplemental Appendix I: DNA extraction and library preparation. Leaf DNA pooling was
done for the same individual combinations for which flower subsamples of 5, 10, 25, and 50
individuals were taken and pooled (see Table S3-4 and Fig. S2 for combinations). Therefore, we
expect the allele frequencies of the equimolar pool of leaf DNA and that of the flower extracts to be
close to identical (as in Experiment 2), unless scaling the Pool-Seq method to many individuals incurs
systematic biases.
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Fig. 3 | Experimental design (Exp. 3) to test Pool-Seq with plant flowers
A total of 50 plants sown at random from 231 diverse genotypes of A. thaliana (Table S2) were individually grown and
sampled in different combinations and in replication (5, 10, 25, 50. In the 100 flower sampling, 50 individuals sampled twice)
(Table S4).

Fig. 4 | Correlation between allele frequencies estimated from direct sequencing of pooled flowers vs individual DNA
extracts pooled at equal concentration.
Genome-wide allele frequency comparisons between the same set of 5,10, 25, or 50 individuals as estimated from directly
extracting DNA and sequencing from pooled flowers and from sequencing of pooled independent DNA extracts. (A)
Pearson’s correlation between allele frequencies across coverage bins (all alleles with minimum alternative allele count >2
and represented in the bona fide 11,769,920 set (further subsets based on other quality thresholds did not provide enough
data points for coverage breakdown). (B) Relative % error of the difference between flower pools and DNA pools across
coverage bins.
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Results: We calculated the correlation between allele frequencies recovered from pools of flowers
and equal leaf DNA pools both originating from the same sets of plants. Because noise decreases
with both increasing numbers of individuals and increasing sequencing coverage, we leveraged the
variation in coverage along the genome to compute correlations in increasing coverage bins.
Frequencies were highly correlated (r > 0.98) for all combinations as long as coverage was over 50X
(Fig. 4). The small mean relative frequency differences (<15%) of alleles at medium (~40X) coverage
for virtually all pairs of flowers or DNA pool libraries suggests that, even when there are small
experimental pooling errors (Fig. 2B-C), the large number of sequenced individuals dilutes errors
(Fig. 4B).

Experiment 4: Multi-year field experiment to showcase the power of
Pool-Seq to track rapid evolution

Rationale: Ultimately, the cost-effective and scalable Pool-Seq approach is designed to track
evolution of populations through time. To showcase its strengths, we conducted an outdoor
experiment over two growing seasons starting from a large population of diverse A. thaliana
genotypes.

Fig. 5 | Design of the field experiment (Exp. 4)
A plot was set up containing a mixture of seeds of 451 natural genotypes mixed at equal proportions. After an entire
generation of growth in the field with natural seed dispersal, two parallel samplings were conducted. One sampling of soil
was conducted in fall prior to natural germination and then planted in a greenhouse and subject to environmental
conditions favorable for germination and growth to limit natural selection. The second sampling was conducted in spring
after natural germination had occurred and plants were exposed to natural selection that could have led to mortality and
survival of different genotypes. Experimental populations outdoors were sampled three times due to longer flowering
periods in outdoor conditions. The whole experiment was replicated three times in parallel.
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Fig. 6 | Photos of the field experiment (Exp. 4)
(A) Setup of 3 population replicates. (B) Close-up of germinating seedlings. (C) Abundant flowering shown in one of the
replicate plots. (D) Sampled flowers for Pool-Sequencing.

Setup: This experiment was performed in an experimental field at the Max Planck Institute of
Biology campus (48.537723, 9.058746, Tübingen, Germany, Fig. 5-6), using a seed mix of 451 natural
genotypes generated from 2 plants of each genotype and 10 siliques each (ca 90,000 seeds). This set
largely overlaps with the 1001 Genomes genotypes, and therefore the starting allele frequencies are
known (available in ABRC stocks under accession CS78942, https://abrc.osu.edu/stocks/465820,
Dataset S1). The seed mixture was split in nine tubes which were sown at three different time
points (November 2014, February 2015, and March 2015) in three independent 1×1 m2 plots (Fig.
6A). This design was used to reduce the chance of disturbance events occurrences that would
impact germination.   After the first generation had dispersed seed during late spring in the field and
synchronized with the local climate and photoperiod, soil samples were collected prior to the
second season’s natural germination (early fall 2015) and transferred to an indoor greenhouse with
optimal conditions for the species, to enable germination, survival, and reproductive success for as
wide a set of genotypes as possible. From the three plots, 56, 69, and 101 adult plants were sampled
from the growth chamber as a baseline (Time 0 in Table S6 and Fig. 5). From the field plots, in the
following spring, 164, 415, and 593 surviving and reproducing adults of the second generation were
sampled for sequencing at 3 different time points to capture the entire temporal window of
flowering (see number of adults per time sample in Table S6 and Fig. 5). We aimed to sample one
flower per individual, paying attention to sample from small to large plants uniformly. The flowers
collected at Time 1, 2, and 3 were sequenced separately. A total of 1,398 individuals were sequenced
in 12 pools of replicate x time point combinations (Table S6). We used the population genetic
statistics of PoPoolation2 as re-implemented in grenedalf to determine genome-wide patterns of
FST across all combinations of replicates and time points accounting for pool size (Table S6) and
genome-wide variation in coverage.
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Results: Plants successfully established in dense patches in the experiment (Fig. 6B-C). Tens of
thousands of seedlings were observed per plot replicate, which theoretically should enable efficient
natural selection (Charlesworth and Charlesworth, 2010). We observed genetic differentiation based
on FST between the baseline (Time 0, offspring of the first generation read in the greenhouse) and
flowers of surviving individuals of generation 2 (Time 1,2,3) was higher (FST ≈ 0.07, Fig. S15) than
differentiation between several independent DNA extractions of subsets of the founder seed mixes
(Exp. 1, FST ≈ 0.0208, Fig. S14). Although we think such genome-wide patterns are likely mostly
driven by drift in the wild, a scan along the genome identified several FST peaks between Time 0 and
Time 1-3, revealing genomic regions that diverged above the background noise level (Fig. 7, Fig.
S17,19).

One of the observed peaks is localized in chromosome 5 near the gene FLOWERING
LOCUS C (FLC, AT5G10140), encoding a MADS-box transcription factor and master regulator of
flowering time. The region with elevated FST is located 5’ of the transcription start site of FLC (ca.
-2.5—0.5K, Fig. 7), suggesting that variation in the promoter region was under some form of natural
selection in these experiments and thus shifted in allele frequency. Average per-SNP FST from Time 0
to all other time points was higher within the approximate promoter region compared to the rest of
the genome (mean [95% quantile] = 0.0548 [0.285] in promoter vs. 0.0380 [0.160] outside;
Wilcoxon signed-rank test P= 2.07 × 10-6, 5.90 × 10-6, 2.42 × 10-4, respectively for the three field
E&R replicates) (Fig. 7A). That the same FST peak is recovered by comparing two cohorts in the
flowering seasons, Time 1 vs. Time 3 , further suggests variation in this genomic region may play a
role in determining early vs. late flowering (Fig. 7B). Not only that, but raw allele frequency changes
from the starting mix of 451 natural genotypes to all sampled flowers (1,172) two generations after
the start of the experiment (Fig. 7C ).

We leveraged the fact that Experiment 4 was conducted in parallel to a previous common
garden experiment 1.51 km away (48.545809, 9.042449) with similarly rich and highly-overlapping A.
thaliana genotype sets (Exposito-Alonso et al., 2019). In the common garden, each genotype was
(individually) scored for an estimated number of seeds per plant that reached adult reproductive
stage. Using an imputed matrix of the 1001 Genomes (http://arapheno.1001genomes.org,
https://aragwas.1001genomes.org) and a Linear Mixed Model (Kang et al., 2008), we conducted
Genome-Wide Associations (GWA) to identify genetic variants that explained variation in seed set
per plant (Fig. 7D), specifically in the “thp” condition of that experiment: Tübingen, high rainfall,
population replicate, (Exposito-Alonso et al., 2019) (For similar evidence in the “mli”: Madrid, low
rainfall, individual replicate, see Fig. S18). This common-garden-scored fitness and GWA approach is
one of the most direct ways to quantify natural selection driven by a specific environment
(Exposito-Alonso et al., 2019; Gompert et al., 2017). It is expected that genetically-based fitness
differences among plants would lead to genotype and allele frequencies changes over time (although
such multi-generational experiments are not often conducted). As expected, we also found an
overlap between the above peak of temporal FST allele frequency differentiation in Experiment’s 4
E&R and moderate fitness-associated SNPs in the parallel common garden (Fig. 7D), with an average
of fitness effect sizes significantly elevated within the same region observed above (Wilcoxon test
P = 0.0313). The fact that flowering time, manually scored in the parallel common garden, was
negatively correlated at the plant level with relative seed production (Spearman’s rank correlation
r = -0.404, S = 31048965, P < 2.2 × 10-16) and survival (r = -0.187, S = 26399658, P = 2.074 × 10-5)
further supports our finding that natural selection may have driven frequency changes in alleles in the
FLC locus in our multi-year E&R field experiment. While the signal in the FLC locus is more readily
interpretable, and is thus a helpful example to illustrate the application of our methods, this region is

14

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.477408doi: bioRxiv preprint 

https://paperpile.com/c/kaWY0K/65Dy
https://goo.gl/maps/C2RwBoZMgi7nPxxi7
https://paperpile.com/c/kaWY0K/xooU
http://arapheno.1001genomes.org
https://aragwas.1001genomes.org
https://paperpile.com/c/kaWY0K/OKYJ
https://paperpile.com/c/kaWY0K/xooU
https://paperpile.com/c/kaWY0K/HS0v+xooU
https://doi.org/10.1101/2022.02.02.477408
http://creativecommons.org/licenses/by-nc/4.0/


Czech, Peng, et al. | Monitoring rapid evolution of plant populations at scale with Pool-Sequencing | Tools & Resources

far from being the only region displaying strong temporal differentiation (Fig. S19). Multiple regions
had FST > 0.2 and showed parallel patterns in three or more replicates or temporal samples of
flowers (Dataset S2). Although some genes involved in disease or dehydration responses are
suggestive, most difficult-to-interpret peaks will deserve more attention in future studies. All in all,
our experiment fulfills the purpose of testing the ability of a simple and cost-effective Pool-Seq
approach to detect rapid evolution of plants subject to strong natural selection pressures at
resolutions comparable even to those of time-intensive and costly common garden experiments and
Genome-Wide Association studies.

Fig. 7 | Temporal allele frequency change in a multi-year Evolve & Resequence experiment compared to fitness effects in a
common garden experiment in the FLC region.
(A-B) Temporal allele frequency differentiation (FST) in the Flowering Locus C region on chromosome 5 showing peaks of
differentiation around the first exon and the upstream promoter region of the gene (positions around 3,180,000; note the
protein coding strand is the reverse strand). (A) Differentiation between the baseline “without selection” (Time 0) and the
flower samples of surviving adults in nature at three time points (Time 1-3). (B) Differentiation between the earliest and
latest flowering cohort for the three replicate plots. (C) Average allele frequency change between the founder seed mix
(one generation prior to Time 0) to adults sampled in generation 2 (Time 1-3). (D) Genome-Wide Association between
genetic variants in the 1001 Genomes and outdoor seed production in a common garden experiment (Exposito-Alonso et
al., 2019) 1.51 kilometers away from the Evolve & Resequence experiment in (A-B).

Discussion and Outlook

The paradigm that evolution is a slow process is being challenged by more and more evidence from
experiments with both animals and plants that allele frequencies within populations fluctuate or
change in the span of seasons or decades following environmental changes (Bergland et al., 2014;
Franks and Weis, 2008). Scalable whole-genome sequencing approaches based on Pool-Seq
(Schlötterer et al., 2014) have enabled the generation of population genomic datasets across
continental scales such as “Drosophila Evolution over Space and Time” (DEST) (Kapun et al., 2021)
(https://dest.bio) or large-scale multi-generational Evolve & Resequence experiments with D.
melanogaster (Rudman et al., 2021). Projects of a similar scale for plants are currently rare, a notable
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exception being the barley composite cross long-term evolution experiment initially developed by
Harlan and then continued by Jain and Allard (Allard and Jain, 1962; Suneson, 1956). Here we present
Pool-Seq laboratory protocols and new efficient software implementations which are scalable to
high-throughput, longitudinal experimental evolution studies of thousands of plant populations at low
cost.

We here presented an open-source and streamlined frequency calling pipeline that
automatically downloads, checks, and runs all the required software tools from raw fastq file to a
frequency table of Pool-Seq samples (Czech and Exposito-Alonso, 2021). Such a reproducible
pipeline also facilitates parallel runs with different pipeline parameters for tool benchmarking and
quality controls for tool parameter comparisons. We show that if a set of bona fide SNPs is already
known for the species, as is the case with Arabidopsis thaliana’s 1001 Genomes Project catalog
(1001 Genomes Consortium, 2016), estimation of allele frequencies from mapped reads is successful
without the need for sophisticated SNP callers to identify new variation, as long as there is sufficient
coverage and quality filters are implemented (Guirao-Rico and González, 2021; Tilk et al., 2019). Two
cases may benefit from further tool implementation in grenepipe: In the absence of bona fide
SNPs, Pool-Seq-specific likelihood or Bayesian SNP callers such as SNAPE are ideal to discover new
SNPs while reducing false positives (Guirao-Rico and González, 2021). In the presence of ultra-low
coverage sequencing, if individual sequencing of founders is available, allele frequency estimates can
be further improved using simulations and linkage disequilibrium information based on the tools
HARP and HAFpipe (Kessner et al., 2013; Tilk et al., 2019).

To enable faster and more user-friendly Pool-Seq-based evolutionary analyses at scale, we
have developed grenedalf. This tool re-implements the now-classic PoPoolation software (Kofler
et al., 2011a) in C++ from the ground up and expands its functionality and types of compatible input
file formats. Speed improvements in the order of ~100X now enable conducting, for instance,
pairwise FST calculations among thousands of samples in hours rather than months (Czech and
Exposito-Alonso, 2022) .

With these bioinformatic improvements in hand, we show that direct whole-genome
sequencing of a mixture of seeds can properly characterize the standing genetic variation of a
hypothetical starting pool of founder individuals for an E&R experiment. Further, direct sampling of
flower tissues (or similarly-sized organs or leaf punches) also enables efficient genetic tracking of
plant populations with tens of thousands of individuals over time—a scale currently not feasible for
experiments with separate individual DNA extracts or library preparations (Fracassetti et al., 2015;
Gautier et al., 2013; Rellstab et al., 2013; Roda et al., 2017). This sampling method potentially
provides an alternative experimental design to common garden experiments, and its simplicity would
potentially facilitate citizen-science real-time evolution projects in large organisms.

Finally we showcase that the described Pool-Seq protocols can be applied in large outdoor
E&R experiments using A. thaliana seed resources. The fact that linkage decays surprisingly fast in A.
thaliana (Fig. S9) (Kim et al., 2007)—probably owing to a ~2-16% outcrossing rate that shuffles
enough standing genetic variation (Bomblies et al., 2010; Platt et al., 2010)—may enable identification
of narrow mapping regions containing adaptive loci using E&R, perhaps even narrower than what
Genome-Wide Associations can currently achieve (Fig. 7) (1001 Genomes Consortium, 2016;
Atwell et al., 2010). The success of Experiment 4 motivates the use of this approach at a larger scale,
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and seems to provide a genomic sensitivity similar to labor-intensive common garden experiments
that are confined to a few environment (Agren and Schemske, 2012; Exposito-Alonso et al., 2019,
2018; Fournier-Level et al., 2011; Manzano-Piedras et al., 2014) ,

Despite the intriguing and complementary association between fitness effect sizes in
common garden experiments and allele frequency changes in our E&R (Experiment 4), the rapid
evolutionary signals inferred here are limited to the single environment studied. To comprehensively
study rapid evolutionary adaptation across climates using E&R, we have initiated a project called
“Genomics of rapid Evolution to Novel Environments” network (GrENE-net), which is a large-scale
extension of Experiment 4 presented here. This internationally distributed E&R GrENE-net project
involves 45 field sites (https://grenenet.org), was started from the same seed mix of Experiment 1,
and has been conducted from 2017 until 2022 (the time of writing)—featuring the largest temporal
and spatial scale among known Evolve & Resequence experiments. The accumulating sequencing
data, expected to exceed 5Tb and over 2,500 population samples, should enable better temporal and
spatial tracking of rapid evolution and understanding of climate × genotype × fitness interactions than
any previous large-scale common garden experiment (Exposito-Alonso et al., 2019; Fournier-Level et
al., 2011; Lovell et al., 2021). It is our hope that the GrENE-net experiment will enable researchers
to establish a direct link between environment and natural selection at the allele frequency level,
stimulate theoretical development in evolutionary genetics, and empower plant biologists’ search for
the genetic basis of adaptation. If biologists wish to forecast plant responses under changing climate
conditions, long-term and highly spatially replicated E&Re datasets such as this one will be
paramount.

Additional Information

Data and Code availability Reads were deposited at NCBI SRA with accession number: <TBD
upon publication>. Genomes of founder populations are available as part of the 1001 Genomes
project: http://1001genomes.org/data/GMI-MPI/releases/v3.1/. Scripts of the analyses in this
manuscript are available at https://github.com/lczech/grenepilot-paper, which contains all settings
used for the runs of our grenepipe (Czech and Exposito-Alonso, 2021) workflow for variant
calling, as well as all python and R scripts for the figures presented here. Genome frequency
manipulations and Pool-Seq-corrected population genetic statistics are implemented in grenedalf
(Czech and Exposito-Alonso, 2022) .
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Plant growth protocol

Experiment 1
The 231 ecotypes were bulked in growth chambers at 20°C under the long-day condition (16 hours
light / 8 hours dark) in three locations. In the Max Planck Institute for Biology, Germany, the growth
chambers at the University of Tübingen’s Institute of Evolutionary Ecology, Germany, and the CNRS
Centre for Functional and Evolutionary Ecology  in Montpellier, France.

Experiment 2
The Col-0 and RUM-20 plants were grown in growth chambers at 22°C under the long-day
condition.

Experiment 3
We took one tube containing 0.1 g of the founder seed mix (~5,000 seeds), bleach-sterilized it,
washed it (20 min; 500ml solution, 10% bleach, 20% SDS) and submerged the seeds in 1% agar
solution for 5 days at 4 °C in the dark. Seeds were planted in trays with soil (CL‑P, Einheitserde
Werkverband e.V., Sinntal‑Altengronau Germany) in 25 trays, 1,000 pots, and germinants were
thinned to one plant per pot. We watered abundantly, growing the plants at 16 °C for 13 days (long
day conditions) before a 60 day vernalization at 4 °C (short day conditions). The vernalization
approach aimed to avoid flowering time differences among our diverse genotypes. Subsequently, the
trays were transferred to 20 °C under the long-day condition for flowering. Two weeks later, 50 pots
were randomly chosen to sample leaves and flowers whenever the plants bloomed

Experiment 4
The genotypes planted are 451 natural accessions (Dataset S1), all mixed together, across three
plots (about 2 seeds/cm2 in 1m2 plots). 20 siliques from two different parental individuals of all
genotypes were pooled and sowed in three batches: one in November 2014, one in February 2015,
one in March 2015. On March 2, 2016, before flowering, bulk soil was taken to germinate seeds in
the growth chamber and collect flowers for sequencing to avoid any selection of genotypes. 50-101
flowers from the plants growing in the growth chamber were sampled to generate allele frequency
data for time point 0 (Table S5). In the field, 50-100 flowers, 80-200 flowers, and 60-300 flowers
were sampled on April 1 (time point 1), April 22 (time point 2), and May 6 (time point 3) respectively
and used for sequencing. The numbers of flowers sampled per plot are outlined in Table S5.

DNA extraction
Experiments 1, 3, and 4
The GrENE-net founder seed mix, containing 231 natural accessions (Dataset S1, Exp 1), was
aliquoted into eight replicates according to the tissue input amount recommended by the Qiagen
DNeasy Plant Mini kit (Hilden, Germany) (Table S1). Seed aliquots were suspended in 0.1% agar and
kept at 4℃ in the dark for 9 to 11 days to initiate germination. Then, seed aliquots were centrifuged
and the supernatant was removed. 0.5 mL of rock and 800 µL of lysis buffer AP1 from the DNeasy
kit were added to the seed tubes. Tissue homogenization was carried out using the Quickprep
adapter in a FastPrep-24 (MP Biomedicals, Irvine, CA, USA) with the following setting: 6.0 m/sec for
40 seconds. Each tube was homogenized for a total of 2 rounds. 8 µL of RNase (100 mg/mL) from
the DNeasy kit was added to the seed homogenate. After a short vortex and a quick spin, the seed
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homogenate was incubated at 65℃ for 10 minutes. After the incubation, 185 µL of buffer P3 from
the DNeasy kit was added to the seed lysate. The tube was inverted and incubated on ice for 5
minutes. The rest of the extraction followed the standard Qiagen DNeasy Plant Mini protocol. DNA
was eluted in 100 µL of AE buffer.

The leaf subsamples and flower subsamples (Exp. 3) were extracted similarly with the
DNeasy Plant Mini kit (Qiagen, Hilden, Germany) with modifications to the grinding step. Tissue
samples and 5 ceramic beads were placed in a screw-cap tube and froze with liquid nitrogen. The
homogenization was again carried out using FastPrep-24 (MP Biomedicals, Irvine, CA, USA) with a
different setting: 4.0 m/sec for 15 seconds. Each tube was homogenized for a total of 2 rounds. The
rest of the extraction followed the standard DNeasy protocol.

The field experiment samples (Exp. 4) of pools of flowers (Table S6) were processed as
previously (Exp. 3).

Experiment 2
Due to the high cost of commercial kits such as the Qiagen DNeasy Plant Mini kit ($4.46 per
isolation at listed price), we set up a cheaper plate-based DNA extraction protocol based on the
widely used 2x CTAB protocol (Doyle and Doyle, 1987). All GrENE-net DNA extracts were isolated
using this custom protocol from pooled flower samples collected from the 45 field sites. We partially
replicated the leaf and flower comparison (see Experiment 3 in the main text) using our
CTAB/chloroform protocol. In the case of flowers, two flowers of similar size were collected in the
same tube prior to DNA extraction (n = 3). In the case of leaves, a leaf was independently extracted,
but leaf extracts from two distinct ecotypes, Col-0 and RUM-20, were combined at similar DNA
mass prior to library preparation (n = 3) (see Experiment 2 in the main text).

2-mercaptoethanol was added to the 2x CTAB buffer (1.4 M NaCl, 100 mM Tris pH 8.0, 20
mM EDTA pH 8.0, 2% w/v CTAB, 1% w/v PVP, ddH2O) to a final concentration (v/v) of 0.3%. The
buffer was warmed at 65°C for at least 30 minutes. Using a TissueLyser II (Qiagen, Hilden,
Germany), frozen plant tissues were pulverized with 3.2 mm steel beads in 2.0 mL tubes on chilled
adapter sets 2 x 24. Homogenization was carried out at 22/s for 35 sec and repeated until the frozen
tissues attained the appearance of greenish white powders. 500 µL of pre-warmed 2x CTAB buffer
was added to each tube to thoroughly resuspend the pulverized tissue. Samples were incubated at
65°C for 50 minutes and inverted every 10 to 15 minutes to resuspend the precipitates. After
incubation, the lysate was transferred to a new 2.0 mL tube. When the lysate was cooled to room
temperature, 500 µL of chloroform:isoamyl alcohol (24:1) was added to the lysate. The tube was
vigorously shaken until the lysate and chloroform appeared well-mixed. The sample was centrifuged
at 20,000 rcf for 14 minutes or until the upper aqueous layer appeared clear. 300 µL of the aqueous
layer was transferred to a new tube or a 96-well deep well plate if doing high-throughput processing.
225 µL (0.75 vol) of isopropanol was added to the supernatant and mixed well by pipetting. The
sample was incubated at 4°C for at least 30 minutes or at -20°C overnight. After incubation, the
sample was centrifuged at max speed for 15 minutes in a tube. Alternatively, the 96-well plate was
centrifuged at 6,100 rcf for 45 minutes. After discarding the supernatant, freshly prepared 70%
ethanol was added to wash the DNA pellet. The sample was centrifuged at max speed for 5 minutes
in a tube. Alternatively, the 96-well plate was centrifuged at 6,100 rcf for 30 minutes. The ethanol
was removed and the pellet was left to air dry for 10 to 15 minutes. The DNA pellet was eluted in
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Tris buffer containing RNase A (10 mM Tris-HCl pH9.0, ddH2O, 20 µg/mL RNase A). The eluate was
incubated at 37°C for 30 minutes. After a pulse spin, the DNA extract was stored at -20°C.

Library preparation

Experiment 1
Because the total number of samples was small and we had large amounts of DNA (Table S1), we
conducted library preparations with Illumina’s TruSeq PCR free library kit (Ilumina, San Diego,
California).

Experiment 2
Because there were only 11 samples, tube-based quantification was performed using the Qubit
dsDNA HS assay. The readings for the input DNA concentration are documented in Table S2. The
library preparation protocol was based on (Baym et al., 2015) with some modifications. 2 µL of DNA
sample was mixed with 2.75 µL TD buffer (Tagment DNA Buffer) and 0.25 µL TD enzyme (Mira
Loma, California, USA). The tagmentation reaction mixture was mixed well by gentle pipetting. After
a flash spin, the sample was incubated at 55°C for 10 minutes and held at 10°C.

Once equilibrated to room temperature or lower, the samples were flash spinned. Then, the
tagmented DNA was mixed with 8 µL 2x KAPA HiFi HotStart ReadyMix (KAPA Biosystems, Boston,
MA, USA), 1.5 µL 10 µM P5 indexing primers (final concentration 0.75 µM), 1.5 µL 10 µM P7
indexing primers (equimolar to P5), and 4 µL Tris-Cl buffer (pH 8.0). The PCR reaction mixture was
mixed well by gentle pipetting and the liquid was spinned down. The DNA was amplified using the
following thermal cycling program:

1. 72°C for 3 minutes
2. 95°C for 3 minutes
3. 98°C for 20 seconds
4. 63°C for 30 seconds
5. 72°C for 30 seconds
6. Repeat from step 3 for 11 additional cycles (i.e. a total of 12 cycles)
7. 72°C for 5 minutes
8. 10°C hold

For post-amplification cleanup and size selection, the 11 libraries were multiplexed in a 1.5
mL tube by mixing 10 µL of each library. The library volume was estimated by aspirating with a P200
pipette (Vlib). 0.45 volume (i.e. 0.45 x Vlib) of homemade SPRI beads was added to the 11-plex library.
The tube was incubated for 5 minutes on a regular rack and then incubated for 5 minutes on a
magnet stand until a bead pellet forms. This bead pellet represents the first elution fraction. The
supernatant excluding the first pellet was transferred to a new 1.5 mL tube on a regular rack. 0.6
volume (i.e. [0.6 - 0.45] x Vlib) of homemade SPRI beads was added to the supernatant. The tube was
incubated for 5 minutes on a regular rack and then incubated for 5 minutes on a magnet stand until a
bead pellet forms. This bead pellet represents the second elution fraction. The supernatant excluding
the second pellet was removed. Each magnetic bead pellet was washed by gently adding 700 µL 70%
ethanol and was incubated for 30 seconds before removing the ethanol. The ethanol wash was
repeated once. The bead pellet was air dried until they lost the shine and began showing tiny cracks.
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The tube containing the bead pellet was taken off the magnet and resuspended in 36 µL of AE buffer
(10 mM Tris-Cl, 0.5 mM EDTA; pH 9.0). After incubating on a regular rack for 3 minutes, the tube
was put on magnet stands for 5 minutes until the bead pellet formed. 34 µL of the eluate fraction
was transferred to a new 1.5 mL tube. Both eluted fractions were quantified with Qubit and analyzed
on a TapeStation 4150 (Memphis, Tennessee, USA) using a D1000 ScreenTape (Cedar Creek, Texas,
USA). The second fraction was sequenced on a HiSeq 2 x 150 lane ( Fig. S6).

Experiment 3
To compare seeds with flowers and leaf extracts without library preparation differences, we
conducted library preparations with Illumina’s TruSeq PCR library kit (Ilumina, San Diego, California)
as in Experiment 1.

Experiment 4
The library preparation procedure was similar to what was described in Rowan et al. 2019 Genetics
with minor volume adjustments. Specifically, the twelve amplified libraries were multiplexed together
by mixing 5 µL of each library. The total volume was brought up to 100 µL with 10 mM Tris-Cl (pH
8.5). The rest of the size selection was performed as written in Rowan et al. (2019). The fragment
length distribution of bead fraction 3 was verified with a Bioanalyzer before being sent for sequencing
on an Illumina HiSeq 3000.
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Supplemental Datasets and Tables
Dataset S1 | Ecotype IDs used for outdoor experiment and GrENE-net seed mixture
Metadata of the 451 and 231 ecotypes lists.
<google drive link>

Dataset S2 | Genes within 10Kb regions with FST > 0.2 in 3+ E&R replicates
TAIR summary of gene annotation.
<google drive link>

8

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.477408doi: bioRxiv preprint 

https://docs.google.com/spreadsheets/d/1fdmzxI-bCipHfAUOEo55ipFVeQc54oVmwv8ANTS3dak/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1jqs4aS1Ds2qTVIXKnQEIwY5oPC1Z1gL7NdAQkhI0rRY/edit?usp=sharing
https://doi.org/10.1101/2022.02.02.477408
http://creativecommons.org/licenses/by-nc/4.0/


Genomics of rapid Evolution in Novel Environments
A Coordinated Distributed Evolution Experiment with Arabidopsis thaliana

Table S1 | GrENE-net founder seed mix DNA extraction replicates

Sample identifier Tissue amount
(mg)

Approximate
number of
individuals

DNA
concentration

(ng/µL)

GrENE-net 231
founder seed mix #1

100 5000 7.98

#2 100 5000 6.48

#3 100 5000 8.56

#4 17.4 870 21.8

#5 18 900 24.8

#6 18.3 915 23.6

#7 20 1000 24.4

#8 21.6 1080 25
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Table S2 | Input DNA concentration library preparation for validation experiments.

Sample identifier Input concentration (ng/µL)

Col-0 leaf extract 2.17

RUM-20 leaf extract 2.04

Pooled flower extract #1 1.84

Pooled flower extract #3 1.97

Pooled flower extract #5 1.98

Col-RUM leaf extract pool #1 2 (predicted, 2 µL of 8.33 ng/µL
diluted in 6.33 µL Tris buffer)

Col-RUM leaf extract pool #2 2 (predicted, 2 µL of 8.53 ng/µL
diluted in 6.53 µL Tris buffer)

Col-RUM leaf extract pool #3 2 (predicted, 2 µL of 8.71 ng/µL
diluted in 6.71 µL Tris buffer)

*due to the flexibility (i.e. ≤3 ng/µL) in the acceptable input range for this protocol, the three leaf
extract pools were not quantified after dilution
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Table S3 | Sampling of 50 leaves

sam
ple
id tray pos

DNA
concen
tration
(ng/µl)

Total DNA
ng

1 1 a2 12.4 620

2 1 c3 23.2 1160

3 1 c7 23.2 1160

4 1 b7 13.5 675

5 1 b8 11.8 590

6 2 b2 17.3 865

7 2 c2 10.7 535

8 2 a4 17.4 870

9 2 a5 12.6 630

10 2 e7 14 700

11 3 c2 10.4 520

12 3 e3 7.54 377

13 3 a4 10.4 520

14 3 b7 18.9 945

15 3 c8 8.3 415

16 4 e2 12.1 605

17 4 d3 19.3 965

18 4 a5 17 850

19 4 e7 6.38 319

20 4 e6 7.06 353

21 4 b8 21.2 1060

22 5 e2 14.4 720

23 5 c3 21.4 1070

24 5 a5 19.1 955

25 5 e6 12.8 640

26 5 e8 10.2 510

27 6 b2 7.24 362

28 6 e3 15.5 775

29 6 d2 12.3 615

30 6 a5 7.3 365

31 6 e4 9.82 491

32 6 a6 8.2 410

33 6 e5 12 600

34 6 c5 9.9 495

35 6 e6 7.48 374

36 6 b7 12.3 615

37 7 d4 9.42 471

38 7 e2 9.42 471
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39 7 b4 13.5 675

40 7 c3 7.84 392

41 7 d7 7.2 360

42 7 c7 11.7 585

43 8 e1 10.5 525

44 8 e2 7.22 361

45 8 d4 9.96 498

46 8 a4 16.1 805

47 8 d5 11.6 580

48 8 c6 7.02 351

49 8 b7 9.86 493

50 8 a8 15.7 785
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Table S4 | Combinatorics of flower and leaf pooling
The 50 randomly selected plants were sampled for the 50 and 100 samples as well as for nested
samples of smaller sets of plants. A graphical scheme of this sampling is in Fig. S3.

sample
id tray pos x100 x50a x50b x25a x25b x10b1 x10b2 x5

1 1 a2 yes yes yes yes yes

2 1 c3 yes yes yes yes yes

3 1 c7 yes yes yes yes

4 1 b7 yes yes yes yes yes

5 1 b8 yes yes yes yes

6 2 b2 yes yes yes yes yes

7 2 c2 yes yes yes yes yes

8 2 a4 yes yes yes yes yes

9 2 a5 yes yes yes yes

10 2 e7 yes yes yes yes yes

11 3 c2 yes yes yes yes yes

12 3 e3 yes yes yes yes yes

13 3 a4 yes yes yes yes yes

14 3 b7 yes yes yes yes

15 3 c8 yes yes yes yes yes

16 4 e2 yes yes yes yes

17 4 d3 yes yes yes yes

18 4 a5 yes yes yes yes yes

19 4 e7 yes yes yes yes

20 4 e6 yes yes yes yes yes

21 4 b8 yes yes yes yes

22 5 e2 yes yes yes yes yes

23 5 c3 yes yes yes yes

24 5 a5 yes yes yes yes yes

25 5 e6 yes yes yes yes

26 5 e8 yes yes yes yes

27 6 b2 yes yes yes yes

28 6 e3 yes yes yes yes

29 6 d2 yes yes yes yes yes

30 6 a5 yes yes yes yes

31 6 e4 yes yes yes yes

32 6 a6 yes yes yes yes

33 6 e5 yes yes yes yes yes

34 6 c5 yes yes yes yes

35 6 e6 yes yes yes yes

36 6 b7 yes yes yes yes
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37 7 d4 yes yes yes yes

38 7 e2 yes yes yes yes yes

39 7 b4 yes yes yes yes yes

40 7 c3 yes yes yes yes yes

41 7 d7 yes yes yes yes yes

42 7 c7 yes yes yes yes

43 8 e1 yes yes yes yes yes

44 8 e2 yes yes yes yes

45 8 d4 yes yes yes yes yes

46 8 a4 yes yes yes yes

47 8 d5 yes yes yes yes

48 8 c6 yes yes yes yes

49 8 b7 yes yes yes yes yes

50 8 a8 yes yes yes yes yes
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Table S5| Pool extraction of flower combinatorics

Tube ID DNA
concentrati
on (ng/ul)

100 1 20.8

100 2 20.8

50 A 31.8

50 B 33.2

25 A 23.8

25 B 19.5

10 B2 5.48

5 B 4.68
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Table S6 |  Sampling of pilot field experiment (Exp. 4)
A total of 12 samples were sequenced either from seed banks or flowers of surviving plants in the outdoor
field. Sequencing metrics are provided for each sample and the final working in silico pool.

S Time rep ID # flowers origin
Input DNA

(ng/µL) read count bp
coverag

e
pool

coverage
1 0 1 1_0 56 Seed bank 0.376 40214556 6032183400 48.3
2 0 2 2_0 69 Seed bank 0.366 62882228 9432334200 75.5 199.6
3 0 3 3_0 101 Seed bank 0.424 63206340 9480951000 75.8
4 1 1 1_1 80 Flowers from field 0.404 51991084 7798662600 62.4
5 1 2 2_1 160 Flowers from field 0.474 65024068 9753610200 78 219.3
6 1 3 3_1 200 Flowers from field 0.454 65731096 9859664400 78.9
7 2 1 1_2 65 Flowers from field 0.374 71196816 1.068E+10 85.4
8 2 2 2_2 205 Flowers from field 0.452 47974450 7196167500 57.6 206.3
9 2 3 3_2 296 Flowers from field 0.33 52761222 7914183300 63.3
10 3 1 1_3 19 Flowers from field 0.25 60332690 9049903500 72.4
11 3 2 2_3 50 Flowers from field 0.434 102265250 15339787500 122.7 206.3
12 3 3 3_3 97 Flowers from field 0.452 64052368 9607855200 76.9
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Supplemental Figures

Fig. S1 | Cartoon of rationale of Pool-Seq
Reads from Illumina sequencing (typically ~150 bp, not at scale) “piled” against the region of the
genome where they map to. The rationale is that if founder allele frequencies, or a reference sample
that did not experience natural selection, we can extract meaningful evolutionary insights from
comparing those with “evolved” populations, i.e. those that have grown in outdoor environments.
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Fig. S2 | Hierarchical sampling of flowers for Pool-sequencing of different sizes
The selection of 50 individuals of Experiment 3 was conducted randomly from ~2,500 plants, but
smaller sets of individuals were conducted in a nested fashion (e.g. the 25B samples were the same
individuals as the 10A, 10B, and 5X sample. This may enable downstream allele frequency
comparisons).
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A B

C D

Fig. S3 | Allele frequencies from the 1001 Arabidopsis Genomes and from seed
Pool-seq.
The x-axis is the folded seed founder frequency used to source outdoor experiments of
GrENE-net.org, based on counting nucleotides at each locus in a bam/pileup file of the mapped reads
(we converted bam to pileup for easier file parsing; same in all bam-based plots below). The y-axis is
the folded frequency characterized from (A) the 1001 Genomes VCF and (B) the GrENE-net
founder VCF. (C) and (D) are the same comparisons as (A) and (B) but for only bona fide of
1,353,386 biallelic SNPs from the 515g subset of the 1001 Genomes.
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Fig. S4 | LD decay in the 1001G, the 470 and 231 and accessions sets
Linkage Disequilibrium LD decay using r2 for the genome collection of (A) the 1001 Genomes
Project, (B) a subset of 231 used in Experiment 1 and 3, and (C) a subset of 451 of the 1001
Genomes used in Experiment 4.
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Fig. S5 | Coverage of the seed sequencing
Example of the coverage of the seeds as a in silico merge of 8 library samples (see Table S1) used in
Fig. S3.
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coverage-all

Fig. S6 | Correlation between raw frequencies and SNP caller fields (all coverages)
The x-axis shows the allele frequency of a biallelic SNP based on bam/pileup format where raw ratios
of alternative and reference bases are computed, and is shared across all comparisons. The y-axis
shows the allele frequency of the same biallelic SNPs as inferred from the allelic depth (“AD”) VCF
field from SNP calling outputs. Deviations from the y=x axis likely reveal artifacts created by SNP
calling softwares. Each row presents three typical callers: BCFtools, freebayes, and GATK. Each
column represents different calling mode or filterings: ‘free’ or discovery SNP calling, guided SNP
calling at known variable positions from the 1001 Genomes, and subset of SNPs to bona fide of
1,353,386 biallelic SNPs from the 515g subset of the 1001 Genomes.
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Coverage 50-100X

Fig. S7 | Correlation between raw frequencies and SNP caller fields (50-100X)
Same as Fig. S5 for coverage 50-100X.
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Coverage-100-250

Fig. S8 | Correlation between raw frequencies and SNP caller fields (100-250X)
Same as Fig. S5 for coverage 100-250X.
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Coverage-250-500

Fig. S10 | Correlation between raw frequencies and SNP caller fields (250-500X)
Same as Fig. S5 for coverage 250-500X.
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Fig. S11 | The problem of SNP calling for Pool-Seq using diploid callers
The figures show that the frequency of variants in the 1001 genomes or the 231 genomes subset is
negative exponential, as expected from the Site Frequency Spectrum. The frequency calling of seeds,
with high coverage, appears to be biased for intermediate frequencies in GATK HaplotypeCaller but
retains the exponential decay using ratios of bases based on pileup using grenedalf in the last panel.
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Fig. S12 | Allele frequencies in the 2 equal mass DNA pool using different quality filters.
Histograms of allele frequencies from a pooled library of 2 distinct ecotypes and the expectation of
50% (black line). (A) Allele frequencies without any filter show the great majority of alleles must be
artifacts, as there is a high point mass close to 0 frequency. (B) Reduction of likely artifacts, yet still
high noise, using quality filters of bases with PHRED score above 30 (Q30) and from reads with
mapping quality over 60 (q60) and for reads where forward and reverse map to the same region (f).
(C) Subsetting allele frequencies to only those SNP found in the 1001 Genomes (1001 Genomes
Consortium, 2016) with the highest quality 1.3 Million from (Exposito-Alonso et al. 2019) mostly
removes all the noise signal with the exception of some rare variants. (D) Final removal of SNPs with
only 1 or 2 bases supporting the alternative allele (minimum allele count >2) finally leaves a clean
Binomial distribution of allele frequencies (owed to limited coverage) around the expected 50%.
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Fig. S13 | Example random Binomial draws and recovered allele frequencies
The distribution from Fig. S12D is compared to a random Binomial distribution with expected
average frequency 50% (gray) and the same coverage distribution as the empirical sample.

28

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.477408doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.02.477408
http://creativecommons.org/licenses/by-nc/4.0/


Genomics of rapid Evolution in Novel Environments
A Coordinated Distributed Evolution Experiment with Arabidopsis thaliana

Fig. S14  | Fraction of DNA contribution to Pool-seq for a 2-flower pool and a 2-leaf pool
Dispersal of allele frequencies from the expected 50% (black vertical lines) for a pool of 2 DNA

sources at equal concentration (red, A-C) and two flower pools (D-F). Both replicated three times.
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Fig. S15 | Fst distributions between all pairs of seed libraries.
Here, we computed Fst between all pairs of seeds (Experiment 1) in windows of 10k base pairs
across all five chromosomes, based on frequencies from the mapped data (bam/pileup files). The
window size was chosen to roughly fit the expected LD decay in A. thaliana. The boxes show the
25th, 50th, and 75th percentiles (i.e., quartiles), with whiskers extending to 1.5 times the
interquartile range (distance between the first and third quartiles). Data points outside this range are
plotted as individual points. The overall average Fst between all pairs is 0.0208, shown here as a gray
vertical line, which represents the biological and statistical noise in population structure between
replicates, and hence is the lower bound and baseline that we expect in other comparisons of Fst, as
shown below.
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Fig. S15 | Fst distributions of all replicates of E&R (Exp. 4).
Here, we used the data from Experiment 4, which are three technical replicates (R1-R3) grown from
the same seed mix (here encoded as “time point” T0), where flowers were collected at three
different time points (T1-T3) during flowering time in the spring of 2016. We here show Fst between
all pairs of replicates, across all time points, in windows of 10k base pairs across all five
chromosomes. The window size was again chosen to fit the expected LD decay in A. thaliana.
Properties of the box plots are as above in Figure S11. The mean Fst, again represented as a gray
vertical line here, is 0.0775, which is more than three times the value of the seed baseline of 0.0208
in Figure 11. Note that the Fst of pairs that involve Replicate 1 is higher than that of the R2 vs R3
pairs. This is likely because R1 suffered a disturbance in the soil that could have created a bottleneck
in this population and hence increased differentiation.
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Fig. S16 | Fst distributions of Time 0 and all replicates in E&R (Exp. 4).
Here, we used the data from Experiment 4, which are three technical replicates (R1-R3) grown from
the same seed mix (here encoded as “time point” T0), where flowers were collected at three
different time points (T1-T3) during flowering time in the spring of 2016. We here show Fst between
the seeds and the flowering time points for each replicate, in windows of 10k base pairs across all
five chromosomes. The window size was again chosen to fit the expected LD decay in A. thaliana.
Properties of the box plots are as above in Figure X. The mean Fst across all replicates and
timepoints, again represented as a gray vertical line here, is 0.0766, which is more than three times
the value of the seed baseline of 0.0208 in Figure X. This indicates that even within one generation
(from seeds to flowers), there is some differentiation happening, which suggests that rapid adaptation
to the local environment of the field site has taken place.
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A

B

C

Fig. S17 | Example genome-wide FST scan of E&R (Exp 4).
Genome-wide FST calculated using grenedalf for replicate 2 between Timepoint 0 and Timepoint
1 (A), Timepoint 2 (B), and Timepoint 3 (C). SNPs overlapping with the Flowering Locus C (FLC)
gene are highlighted in green (zoom in of the region in main Fig. 7). Only SNPs part of the bona fide
11,769,920 biallelic SNPs are shown.
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Fig. S18 Example genome-wide FST scan of E&R (Exp 4).
Genome-Wide association of seed set in four key conditions from Exposito-Alonso et al. 2019.
Along with condition Tübingen-high precipitation-population replicate (“thp”, Fig. 7), condition
Madrid-low precipitation-individual replicate (“mli”) also show signs of SNP association to seed set
within as well as the putative promoter region of the FLC gene (dotted box).
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Genomics of rapid Evolution in Novel Environments
A Coordinated Distributed Evolution Experiment with Arabidopsis thaliana

A

B

C

Fig. S19 | Example genome-wide FST scan of E&R (Exp 4) with 10Kb window averages.
Genome-wide FST averages over 10Kb regions for the same samples as Fig. S17. Multiple areas in the
genome show high differentiation.
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Supplementary Text:
Pool-Sequencing corrections for population genetic statistics

Lucas Czech, Jeffrey P. Spence, and Moisés Expósito-Alonso
Correspondence: moisesexpositoalonso@gmail.com, luc@s-cze.ch

This document describes our assessment of pool-sequencing-specific equations for population genetic measures of
diversity (such as θπ, θWatterson, Tajima’s D), and differentiation (such as FST). We re-render some approaches
originally presented and implemented in PoPoolation [10] and PoPoolation2 [11]. The aim of these equations is
to correct for biases of pool sequencing, such as limited sample size (number of individuals pooled, or pool size n)
and limited read size (number of reads obtained from those individuals, or coverage C).

This document is largely based on two sources:

• The reverse-engineered code of PoPoolation and PoPoolation2. We want this document to represent the
equations that are actually computed when running these programs, as we feel that they need a more thorough
assessment than what is available in the current literature.

• The PoPoolation equations document correction equations.pdf as found in their code repository; we provide
a copy at https://github.com/lczech/popoolation/blob/master/files/correction equations.pdf. This document de-
rives some of the equations implemented, but also contains some more that might be interesting for a deeper
understanding of the topic.

Lastly, we here introduce novel estimators for FST for pool sequencing data, that correct for both biases described
above.

DISCLAIMER: This is a draft document (last updated 2022-02-02) that describes the equations as
implemented in PoPoolation, to the best of our knowledge. We aim to make this public to discuss
our new implementation and novel methods improving on PoPoolation with its developers and the
research community. Please reach out to us if you have comments or feedback.

1 Definitions

1.1 Pool Sequencing Data

We first define the input that we assume to be given for all subsequent equations. In the software implementation of
the equations, these are be based on the input data, or set by the user as parameters.

n : Pool size, provided by the user. This is the number of individuals that were pooled together for sequencing.

C : Observed coverage. This is the number of reads sequenced from the pool that span the given position in the
genome.

b : Minimum allele count, provided by the user. We do not want to consider SNPs with fewer than b alternative
reads in the data, as they might be sequencing errors. Note that we assume b to be a user-provided constant, and
hence leave it out of (most) function arguments for simplicity.

1.2 Notation

τ : Nucleotides, with τ ∈ {A, C, G, T}.

cτ : Nucleotide counts, i. e., how many reads have a certain nucleotide τ at a given genomic position. Hence,
C =

∑
τ

cτ .

c : Vector of nucleotide counts (for convenience), i. e., c = ( cA, cC, cG, cT ).
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fτ : Nucleotide frequencies, i. e., fτ = cτ /C.

f : Vector of nucleotide frequencies (for convenience), i. e., f = ( fA, fC, fG, fT ).

u, v : For biallelic SNP positions, we simplify, and instead of the four cτ values, just use u for the count of the
reference (major, or “first”) allele, and v for the count of the alternative (minor, or “second”) allele. We here leave
it open whether the reference allele is defined by some reference genome, or simply the major (highest count) allele.
In the PoPoolation notation, this means that u ∧= m, or sometimes u ∧= i; PoPoolation uses both, depending on
context, and v ∧= C − m, or v ∧= C − i.

m : Index of summation over potential levels of coverage C.

k : Index of summation over potential pool sizes n.

1.3 Harmonic Numbers

We define a1 and a2 based on (generalized) harmonic numbers, as the sum of (squared) reciprocals of the first n − 1
positive integers:

a1(n) =
n−1∑
k=1

1
k

(1)

a2(n) =
n−1∑
k=1

1
k2 (2)

These will be needed in several of the below equations. We use this notation as a compromise between Equation
(3.6) of Hahn (2018) [5] and the notation of an and bn used in Achaz (2008) [1] for these quantities. Note that the
standard definition of harmonic numbers H(n) includes the n-th element, which the above definition does not.

2 Theta Pi

First, we derive equations for θπ, also called Tajima’s π, based on its original (classic) definition, but correcting for
biases introduced by pool sequencing, following PoPoolation.

We have two aims. First, to produce an unbiased estimator of θπ based on pool size and coverage-induced noise, and
second, to derive an expectation of the “population mutation rate” θ from the former estimator.

Unbiased Pool-seq estimator of θπ for biallelic SNPs

We first define θπ, as usual, as the heterozygosity based on the allele frequencies at a given locus:

θπ(f) = n

n − 1

(
1 −

∑
τ

f2
τ

)
(3)

using the possible nucleotide frequencies f = ( fA, fC, fG, fT ), with τ ∈ {A, C, G, T}, with Bessel’s correction for
the number of sequences n (which is the equivalent of individual sequencing for our pool size n). See for example
Equation (3.1) of Hahn (2018) [5] for the original definition for individuals.

In the pool-sequencing case, however, we have a coverage of C reads at a given position in the genome. We hence
can use nucleotide counts cτ instead, that is, fτ = cτ /C. We furthermore use Bessel’s correction C

C−1 based on the
read coverage to obtain an unbiased estimate, and reformulate the above as:

θπ(c, C) = C

C − 1

(
1 −

∑
τ

c2
τ

C2

)
(4)

At this point, the PoPoolation equations document begins to simplify the above equation, and then breaks it down
for biallelic SNPs. However, their (and our) implementation differ from this, and use the above equation that can
work with any (not just biallelic) SNPs. We hence do not introduce these simplifications here. Note however that
the computation is still only conducted on biallelic sites, as the correction term introduced below assumes this.
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Expected value of population mutation rate θ from nucleotide diversity

We now use the expectation of the θπ estimator to infer the population mutation rate θ̂, accounting for noise generated
by the total coverage C and pools of n individuals. We assume a biallelic site, and use expectations from a neutral
site frequency spectrum under constant population size:

E(θπ|C, n) = P (SNP|n) ·
C−b∑
m=b

θπ(m, C) · P (m|C, n) (5)

In words, the expected value is computed by summing all possible SNP counts (that exceed the minimum count b)
that can occur in a pool with coverage C (using the first/major allele count m here, with second/minor allele count
C − m implicit), weighted by the probability to have each of those counts, and scaled by the probability to have a
SNP in the first place.

Here, we are using the minimum allele count b that we want to consider (as provided by the user), meaning that
we only consider SNPs that have at least b reads for either the first or second allele. As we are only using the first
allele count m in the equation above, and do not know which of the two counts is the larger one, we “sandwhich”
our potential values for the coverage between b and C − b.

The two probabilities used above are computed as follows.

P (SNP|n) is the probability of observing a SNP in a pool of n individuals:

P (SNP|n) = θ

n−1∑
k=1

1
k

= θa1(n) (6)

Assuming that all variation is neutral, and that the population is of constant size and in mutation-drift equilibrium,
by definition, θ = E(S/a1(n)) with S segregating sites. Then, the a1 terms cancel out, meaning that Eq. (6) yields
the proportion of variable sites.

P (m|C, n) is the probability of observing m as first allele count in a SNP with C reads from a pool of dimension n:

P (m|C, n) = 1
a1(n)

n−1∑
k=1

1
k

P (m|C, n, k) (7)

P (m|C, n, k) is the probability of having a first allele count of m observed in C reads that were taken from a pool of
n individuals with first allele count of k. That is, m is the allele count in the reads, and k is the allele count in the
pool:

P (m|C, n, k) =
(

C

m

)(
k

n

)m (n − k

n

)C−m

(8)

In words, P (m|C, n, k) follows a binomial distribution, with m successes out of C trials with a success probability of
k/n for each trial. That is, we compute how likely it is to observe m as the first/major allele count in C reads, given
the frequency k/n of the major allele in the pool. Again, the count of the second/minor allele is implicitly used here
as C − m.

Starting from Eq. (5), we can now put this together:

E(θπ|C, n) = P (SNP|n) ·
C−b∑
m=b

θπ(m, C) · P (m|C, n)

= θa1(n) ·
C−b∑
m=b

2u(C − m)
C(C − 1) · 1

a1(n)

n−1∑
k=1

1
k

(
C

m

)(
k

n

)m (n − k

n

)C−m

(9)

Final approximation for population mutation rate Theta

We can now solve this for θ to define our final corrected estimate θπ,pool.

θ ≈ E(θπ|C, n)
a1(n) ·

∑C−b

m=b
θπ(m, C) · P (m|C, n)

(10)
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This only leaves the E(θπ|C, n) term unresolved, which we however can estimate from our data using the classic
estimator as shown in Eq. (4); note however that this is only evaluated on biallelic SNPs that have at least a count
of b. In total, this yields:

θπ,pool(c, C, n) :=
C

C−1

(
1 −

∑
τ

c2
τ

C2

)
∑C−b

m=b

2m(C−m)
C(C−1) ·

∑n−1
k=1

1
k

(
C
m

) (
k
n

)m (n−k
n

)C−m
(11)

Note that the a1 terms cancel out, and that the denominator only depends on the total coverage C and the pool
size n (and not on any allele counts cτ ), and hence only needs to be computed once per coverage level, yielding a
significant computational speedup.

The above computation is for a single variant site. For a whole region or window, the values of θπ,pool(c, C, n) are
simply summed up. This is the equation as implemented in PoPoolation as the measure called pi, and implemented
in our grenedalf as well.

3 Theta Watterson

For Watteron’s estimator θw, we follow the same approach as above. In order to derive the pool-sequencing corrected
equations, we first define θw as usual:

θw(u, C) = S(u)∑C−1
k=1 1/k

(12)

where classically, S is the number of segregating sites, see for example Equation (3.5) of Hahn (2018) [5]. We are
here working with a biallelic SNP at a single site, which as before we only want to consider if its count is within the
limits of the minimum allele count b, and so we define:

S(u) =
{

1 if b ≤ u ≤ C − b

0 otherwise
(13)

Reasoning the same as above, we get the expected value of θw as:

E(θw|C, n) = P (SNP|n) ·
∑C−b

m=b
P (m|C, n)∑C−1

k=1 1/k

with the two probability terms again as in Eq. (6) and Eq. (7). For conciseness, we here only resolve P (SNP|n):

= θa1(n) ·
∑C−b

m=b
P (m|C, n)∑C−1

k=1 1/k
(14)

We can again solve this for θ, to get our corrected estimate:

θ ≈ E(θw|C, n) ·
∑C−1

k=1 1/k

a1(n) ·
∑C−b

m=b
P (m|C, n)

(15)

Again we can use the classic value θw(u, C) of Eq. (12) for the expected value E(θw|C, n), so that the summation
over 1/k in the numerator and in θw(u, C) cancel out here. We can now define our estimate:

θw,pool(u, C, n) := S(u)
a1(n) ·

∑C−b

m=b
P (m|C, n)

We can now replace P (m|C, n) according to Eq. (7) and Eq. (8). The a1(n) terms in the denominator and in
P (m|C, n) cancel out, leading to the final equation:

= S(u)∑C−b

m=b

∑n−1
k=1

1
k

P (m|C, n, k)

= S(u)∑C−b

m=b

∑n−1
k=1

1
k

(
C
m

) (
k
n

)m (n−k
n

)C−m
(16)
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As before, the denominator only depends on the coverage C, and hence only needs to be computed once per coverage
level that is present in the data.

Again, the approach to compute this for a window is to sum up all values across the SNPs in the window. This is
the equation as implemented in PoPoolation as the measure called theta, and implemented in our grenedalf as
well.

4 Tajima’s D

Above, we have defined pool-sequencing corrected estimators θπ and θw. Now, we want to use them to define a test
akin to Tajima’s D for pool sequencing. We are here again following the PoPoolation approach, and re-derive their
equations.

4.1 Pool-Sequencing Correction

The PoPoolation equations document derives the following estimator. To the best of our knowledge, this is however
not implemented in PoPoolation; instead, they compute Tajima’s D as presented in the following Section (4.2).
We still introduce the approach here, for reference, and in the hope that it might be helpful.

First, we define:

dpool(u, C) := θπ,pool(u, C) − θw,pool(u, C) (17)

using the major allele count u at a site with coverage C, and use this to define our statistic:

Dpool(u, C) := dpool(u, C)√
Var(dpool(u, C))

(18)

In order to compute the variance of dpool (leaving out function arguments for simplicty), we start with the standard
expansion of the variance:

Var(dpool) = E(d2
pool) − E(dpool)2

At this point, we use that dpool is unbiased (for populations at equilibrium) , and hence has an expected value of 0,
that is, E(dpool)2 = 0. The PoPoolation equations document notes that this is only true if they did their previous
calculations correctly, but we trust they did .

Then, we can compute the variance as:

Var(dpool) = E(d2
pool)

= P (SNP|n) ·
C−b∑
m=b

d2
pool(m, C) · P (m|C, n)

which can be resolved using equations Eq. (6) and Eq. (7) from previous sections:

= θ ·
C−b∑
m=b

(θπ,pool(m, C) − θw,pool(m, C))2 ·
n−1∑
k=1

1
k

(
C

m

)(
k

n

)m (n − k

n

)C−m

(19)

This leaves θ to be estimated. PoPoolation suggests to estimate it as θπ,pool on the same window on which we are
computing Dpool. This assumes that all individuals contribute the same number of reads to the pool.

The first summation in Eq. (19) involves computing θπ,pool and θw,pool repeatedly C − 2b many times, with each of
these computations involving to compute their respective denominators, as shown in Eq. (11) and Eq. (16). However,
as C remains constant throughout this computation, these denominators (the correction terms) are identical, so that
we only need to compute them once, to gain a ≈ C-fold speedup.

At this point, the PoPoolation equation document also introduces an approach to compute Tajima’s D based on the
above in windows. We here skip this part for brevity.
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4.2 Integration with Classic Tajima’s D

On large windows, the classic Tajima’s D is not a measure of significance (in number of standard deviations away from
the null hypothesis), but instead is a measure of the magnitude of the divergence from neutrality. This is because all
loci are considered completely linked, even if they are not in reality.

However, the above pool-sequencing Tajima’s D instead consideres all loci as completely unlinked, and thus represents
the number of standard deviations away from neutrality. Therefore, it gives a different numerical result that has a
much higher absolute value compared to classic Tajima’s D.

Now, we want to obtain a correction term for the pool-sequence Tajima’s D to obtain values that are comparable
to classic Tajima’s D in non-small windows, that is, we want a measure of the magnitude of the divergence from
neutrality. We again follow the PoPoolation approach, and here derive the equations that are actually implemented.

Approach by Achaz

To this end, PoPoolation2 uses a modified version of the Y ∗ test of Achaz (2008) [1], which was originally developed
as a test for neutrality despite the presence of sequencing errors. This test only works when excluding singletons,
that is, we set b := 2 for this part.

Following PoPoolation and Achaz (2008) [1], we first define:

f∗(n) = n − 3
a1(n) · (n − 1) − n

(20)

which is then used to define:

α∗(n) = f∗2 ·
(

a1(n) − n

n − 1

)
+ f∗ ·

(
a1(n) · 4(n + 1)

(n − 1)2 − 2 · n + 3
n − 1

)
− a1(n) · 8(n + 1)

n(n − 1)2 + n2 + n + 60
3n(n − 1) (21)

and:

β∗(n) = f∗2 ·
(

a2(n) − 2n − 1
(n − 1)2

)
+ f∗ ·

(
a1(n) · 8

n − 1 − a1(n) · 4
n(n − 1) − n3 + 12n2 − 35n + 18

n(n − 1)2

)

− a1(n) · 16
n(n − 1) + a1(n) · 8

n2(n − 1) + 2(n4 + 110n2 − 255n + 126)
9n2(n − 1)2 (22)

Note that these equations were originally developed for data from individuals, and hence here, n denotes the number
of individuals as if we were doing individual sequencing.

NB: The PoPoolation document recommends to counter-check the correctness of their equation with the original of
Achaz (2008) [1]. In fact, PoPoolation introduced a slight mistake in the last term of β∗, which we have fixed here.
Above is the (hopefully) correct one, following Achaz (2008) [1]. Note that the mistake only concerns the PoPoolation
equations document, but not their implementation.

The number of individuals sequenced

The only unresolved parameter is n, which corresponds to the number of individuals sequenced – if we were to do
individual sequencing. In our case of pool sequencing, according to PoPoolation, we can reasonably substitute this
with the expected number of distinct individuals sequenced.

To this end, we use the coverage C, as well as the pool size n, which we here use as our substitute for the number
of individuals sequenced. Then, we define ñ (called ñbase in the PoPoolation equations document) as the expected
number of individuals from our pool that have been sequenced:

ñ =
T∑

k=1

k∑
j=1

(−1)k−j · k

(
n

k

)(
k

j

)(
j

n

)C

(23)
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where T = max(C, n); if n is much larger than C, we can assume ñ ≈ C. Our substitute ñ is then obtained by
averaging ñ over the window W .

Computing the expected number of distinct individuals sequenced corresponds to the following statistical question:
Given a set of integers A = {1, . . . , n} (corresponding to individuals), pick a set B of C elements from set A with
replacement (corresponding to reads); what is the expected number of distinct values (individuals) that have been
picked in B (that we have reads from)?

PoPoolation computes this value by brute force using Eq. (23), that is, by trying all possible ways to pick numbers
from the set. However, there exists a closed form solution to this question, which yields massive speedups for larger
coverages, which we have implemented.

One way to arrive at the closed form expression is as follows: Define an indicator random variable Ii for 1 ≤ i ≤ n
as 1 if individual i is present in the set B (that is, if individual i has been sequenced), and as 0 if not. Then, the size
of set B is simply

∑n

i=1 Ii.

The probability that Ii equals 1 (that is, that individual i has been sequenced) for any i is given by:

P (Ii = 1) = 1 −
(

n − 1
n

)C

(24)

In words, this is the complement of not picking i in all of the C picks from set A.

The expected size of the set B can then be computed by linearity of expectation for all i, yielding our closed form
expression:

ñ = n

(
1 −

(
n − 1

n

)C
)

(25)

This is equation that we compute in our implementation to arrive at ñ for a given coverage C and poolsize n.

Final estimator for D

Now that we have a way of computing a reasonable value for the number of individuals sequenced, we can finally
define the estimator:

D̃pool = θπ − θw√
|W |−1 · α∗(ñ) · θ + β∗(ñ) · θ2

(26)

following PoPoolation and Achaz (2008) [1]. This requires b = 2; furthermore, PoPoolation suggests to use “not too
small” windows. We are using the size |W | of the window here, that is, the total length along the genome, which is
typically much larger than the number of SNPs in the window . The θ used in the denominator is simply θw again.

The above is the estimator as implemented in PoPoolation and in our implementation.

4.3 Assumptions and Biases

In the above computation of the correction term for Tajima’s D for pool sequencing, several assumptions are made
that lead to the resulting estimator being conservative, i. e., yielding smaller values that what would be expected
from individual sequencing of samples. Based on the explanation in the PoPoolation manual (most of the text in this
section is copied from there), we here explore the underlying assumptions and biases.

The locally fluctuating coverage is replaced by the minimum coverage. This makes the variance estimator larger, and
therefore leads to conservative estimates of Tajima’s D.

The random number of different individuals sequenced under a given coverage C is replaced by its expected value ñ.
This assumption should not affect the results much: If the pool size is large compared to the coverage, sequencing
the same individual more than once is uncommon.

Furthermore the number of different individuals sequenced will have a low variance. As we are working with the
minimum coverage, ñ will be biased downwards, tending to give a conservative estimate of the variance.

At different positions, the subsets from the pool are sequenced might be different. Their coalescent histories will
be correlated but not identical. As the classical equations for Tajima’s D are for single samples sharing a common
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coalescent history, there is more independence in the data than assumed with the classical formula. This again should
make the variance approximation more conservative.

Summing up, the approximate variance in the above equations provides a conservative approximation, and the values
for Tajima’s D will tend to be smaller than those that would be expected for an experiment based on individual
sequencing of single samples.

Lastly, the PoPoolation code repository contains a plot showing the correlation between the classical Tajima’s D and
the corrected Tajima’s D using the equations described above; please see here, where the x-axis corresponds to the
classical value, and the y-axis the the corrected one. This plot has been made with real-world data from Drosophila
with a coverage of 12, a window size of 500 and a minimum count of 1.

4.4 PoPoolation Bugs

From our assessment of the PoPoolation code, and from personal communication with Robert Kofler, we suspect
that the implementation of the above D̃pool in PoPoolation ≤ v1.2.2 contains several bugs, which alter the numerical
results of the computation of Tajima’s D. At the moment, we are in contact with Robert Kofler, are still verifying
these bugs, and are investigating their consequences. We here want to thank Robert for his positive reply and his
support regarding our questions.

5 Fixation Index FST for Pool-Seq

In this section, we will derive unbiased estimators of various measures of heterozygosity in two populations for
Pool-sequencing data. These will then be combined to obtain “sample-size” and “pool-size” corrected estimators of
two definitions of FST. On top of these two novel estimators for FST in the pool-sequencing context, we also walk
through the two existing estimators as suggested by Kofler et al. (2011b) [11] and Karlsson et al. (2007) [9]. Both
are implemented in PoPoolation2, and are called the “classical” or “conventional pool sequencing” approach, and
the “Karlsson approach adapted to digital data”, respectively, in Kofler et al. (2011b) [11]. We compare all four
approaches to each other, and show that the “classical” approach is biased for lower coverages or small pool sizes,
and the Karlsson approach is biased for small pool sizes (bias on the order of 1/pool size). See also Hivert et al.
(2018) [7] for an assessment of FST in the pool-sequencing context.

There are several non-equivalent definitions of FST. The overall goal is to measure some degree of differentiation
between two populations, which can be represented as a proportion of variation that cannot be explained by variation
within populations. What is unclear is a proportion of what variation? There are two natural candidates leading to
two related, but distinct definitions of FST. The first definition, which we will call FNei

ST following Nei (1973) [12],
considers the proportion of the total variation in the two populations. This statistic is also called GST, see for
example Equation (5.5) of Hahn (2018) [5]. The second definition, which we will call FHudson

ST follwing Hudson et al.
(1992) [8], considers the proportion of the variation between populations, see also Cockerham (1969) [4] and Weir
and Hill (2002) [13]. This second definition is also considered in Karlsson et al. (2007) [9], which we examine below
in Section (5.4).

To make this more formal, we can consider the probability that two haploids carry different alleles. We could consider
drawing the two haploids from the same population (with the population chosen at random), which we call πwithin;
or we could consider drawing the two haploids from different populations, which we call πbetween; or finally we
could consider drawing the two haploids totally at random from either population (potentially the same populations,
potentially different populations) which we call πtotal. See Bhatia et al. (2013) [2] for more background information
on this.

Our two definitions of FST are then

FNei
ST = 1 − πwithin

πtotal
(27)

FHudson
ST = 1 − πwithin

πbetween
(28)

If we consider a single locus with up 4 alleles, with frequencies fτp (possibly zero) with τ denoting the allele with
τ ∈ {A, C, G, T } and p denoting the population with subscripts (1) and (2), we can calculate the various πs as follows

8

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.02.477408doi: bioRxiv preprint 

https://github.com/lczech/popoolation/raw/master/files/correlation_classic_correctedTajimasD.png
https://doi.org/10.1101/2022.02.02.477408
http://creativecommons.org/licenses/by-nc/4.0/


πwithin = 1
2

[(
1 −

∑
τ

f2
τ(1)

)
+

(
1 −

∑
τ

f2
τ(2)

)]
(29)

πbetween = 1 −
∑

τ

fτ(1)fτ(2) (30)

πtotal = 1
2πwithin + 1

2πbetween (31)

which are then used in our above definitions of FST.

5.1 Unbiased estimators of the πs

Since both definitions of FST rely on these πs, we will need to derive unbiased estimates for them. We will show
below that the following are unbiased estimators of the corresponding quantities without hats:

π̂within = 1
2

[(
n(1)

n(1) − 1

)(
C(1)

C(1) − 1

)(
1 −

∑
τ

(
cτ(1)

C(1)

)2
)

+
(

n(2)

n(2) − 1

)(
C(2)

C(2) − 1

)(
1 −

∑
τ

(
cτ(2)

C(2)

)2
)]

(32)

π̂between = 1 −
∑

τ

(
Cτ,1

C(1)

)(
Cτ,2

C(2)

)
(33)

π̂total = 1
2 π̂within + 1

2 π̂between (34)

In the following, we derive these estimators.

Unbiased estimator of π̂within

We have derived previously that

E

[(
n(1)

n(1) − 1

)(
C(1)

C(1) − 1

)(
1 −

∑
τ

(
Cτ,1

C(1)

)2
)]

=

(
1 −

∑
τ

f2
τ,1

)
,

within a single population. It follows immediately that averaging these estimators across the two populations is
unbiased for πwithin.

Unbiased estimator of π̂between

Since the two pools are independent, we have that

E [π̂between] = 1 −
∑

τ

E
[(

Cτ,1

C(1)

)]
E
[(

Cτ,2

C(2)

)]
.

The frequency of alleles within a pool is an unbiased estimate for the frequency in the population, so

E
[(

Cτ,p

C(p)

)]
= fτ,p,

showing that π̂between is unbiased for πbetween.
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Unbiased estimator of π̂total

That π̂total is unbiased for πtotal follows immediately from the definition of πtotal in Eq. (31) and the unbiasedness of
π̂within and π̂between.

5.2 Final unbiased estimators of FST per SNP and per window

These estimators then immediately suggest the following ratio estimators for the different definitions of FST:

F̂
Nei
ST = 1 − π̂within

π̂total
(35)

F̂
Hudson
ST = 1 − π̂within

π̂between
(36)

All of this has been for a single site, but we are often interested in combining information across SNPs within a
window W (or possibly genome wide). In such a case, define π̂ℓ

within to be π̂within as above but for SNP ℓ ∈ W . Define
π̂ℓ

between and π̂ℓ
total analogously. We then combine information across the SNPs in the window W as

F̂
Nei
ST = 1 −

∑
ℓ∈W

π̂ℓ
within∑

ℓ∈W
π̂ℓ

total
(37)

F̂
Hudson
ST = 1 −

∑
ℓ∈W

π̂ℓ
within∑

ℓ∈W
π̂ℓ

between
(38)

See Bhatia et al. (2013) [2] for a practical and theoretical justification for using this “ratio of averages” instead of
using an “average of ratios”. These are our asymptotically unbiased estimators for FST for Pool-seq data, which take
the finite sampling of individuals from the population, and the finite sampling of reads from each individual in the
pool, into account.

At the time of writing, we have only theoretically derived these estimators, but have not yet implemented them in
our software.

5.3 Estimator of FST as implemented in PoPoolation2

The implementation in PoPoolation2 [11] offers two ways to estimate FST: What they call the “classical” or
“conventional” approach by Hartl and Clark (2007) [6], and an approach adapted to digital data following Karlsson
et al. (2007) [9]. In this and the next section, we discuss these estimators. For comparability and historical backwards
compatibility, we however still offer both these estimators in our implementation.

Furthermore, the PoPoolation equations document explains derivations of equations for Pool-seq corrected estimators
of FST, which however to the best of our knowledge are not actually implemented in either PoPoolation nor
PoPoolation2. We here still walk through these, see Section (6).

First, we present the “classical” approach as implemented in PoPoolation2, labelled with superscript “PoPool”
here. We compute FST for two subpopulations, which we here again denote with subscripts (1) and (2), and the total
population with (T ). We expect poolsizes n >= 2.

For each SNP in a given window, PoPoolation2 computes:
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π̂PoPool
(1) =

C(1)

C(1) − 1 ·

(
1 −

∑
τ

f2
τ(1)

)
(39)

π̂PoPool
(2) =

C(2)

C(2) − 1 ·

(
1 −

∑
τ

f2
τ(2)

)
(40)

π̂PoPool
(T ) =

C(T )

C(T ) − 1 ·

(
1 −

∑
τ

f2
τ(T )

)
(41)

with

C(T ) = min
(
C(1), C(2)

)
fτ(T ) = 1

2 ·
(
fτ(1) + fτ(2)

)
These quantities are accumulated over the window W :

π̂PoPool
W (1) =

n(1)

n(1) − 1 ·
∑
W

π(1) (42)

π̂PoPool
W (2) =

n(2)

n(2) − 1 ·
∑
W

π(2) (43)

π̂PoPool
W (T ) =

n(T )

n(T ) − 1 ·
∑
W

π(T ) (44)

with

n(T ) = min
(
n(1), n(2)

)
Finally, the estimate of FSTis computed as:

F̂
PoPool
FST =

πW (T ) − 1
2

(
πW (1) + πW (2)

)
πW (T )

(45)

Because this estimator uses the minimum coverage and minimum pool size for either of the populations to calculate
πW (T ), it produces biased FST values for small pool sizes or coverages. This was also pointed out by Hivert et al.
(2018) [7]. It is therefore recommended to use the unbiased estimator presented above.

5.4 Asymptotically Unbiased Estimator of FST by Karlsson et al.

Another estimator for FST that is offered in PoPoolation2 is based on the equations used in Karlsson et al. (2007)
[9], see the last page of the Supplemental Information of Karlsson et al. for their derivation. We here briefly also go
through the derivation.

We here call this estimator using the superscript “Karlsson”, which is again defined for two subpopulations denoted
with subscripts (1) and (2). We are here only looking at biallelic SNPs. Instead of τ for the four nucleotides, we
hence use u for the major and v for the minor allele again, where u is the allele with the higher average frequency in
the two subpopulations (as opposed to the allele with the highest total count).

We start with the definition of FKarlsson
FST from Karlsson et al. for the SNPs in a window W :
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FKarlsson
FST =

∑
W

Nk∑
W

Dk
(46)

where the the numerator Nk and denominator Dk for a single site k in W are:

Nk = v(1) · (u(2) − u(1)) + v(2) · (u(1) − u(2)) (47)

Dk = v(1)u(2) + u(1)v(2)

= Nk + v(1)u(1) + v(2) + u(2) (48)

These are estimated as follows, using the numerator N̂k and denominator D̂k at a single site:

N̂k =
(

u(1)

C(1)
−

u(2)

C(2)

)2

−
(

h(1)

C(1)
+

h(2)

C(2)

)
(49)

D̂k = N̂k + h(1) + h(2) (50)

with two additional helpers:

h(1) =
u(1) · v(1)

C(1) ·
(
C(1) − 1

)
h(2) =

u(2) · v(2)

C(2) ·
(
C(2) − 1

)
And finally, these are used to compute the asymptotically unbiased estimator F̂

Karlsson
FST for a window W :

F̂
Karlsson
FST =

∑
W

N̂k∑
W

D̂k

(51)

According to Karlsson et al., when the coverages C(1) and C(2) (called “sample sizes” there) are equal, the estimator
reduces to the estimator of FST given by Weir and Hill (2002) [13]. Karlsson et al. further state that by the Lehmann-
Scheffé theorem [3, Theorem 4.2.2], it follows that N̂k and D̂k are uniformly minimum variance unbiased estimators
of Nk and Dk, respectively, and hence conclude that their estimator F̂ST,K is also asymptotically unbiased.

The estimator above hence follows what we called the FHudson
ST definition. It however assumes the pool size to be

infinite, that is, it is missing Bessel’s correction for pool size. Apart from that, it is identical to our estimator F̂
Hudson
ST

as explained in Section (5.2).

6 PoPoolation2 Equations Document

The PoPoolations equation document also presents some simplifications and related equations that to the best of our
knowledge are not implemented in their software. We hence do not go through them in detail here, but still want to
mention them, in case they might be useful for others.

• They present simplified versions of θπ, θw, and Tajima’s D, which assume that allele frequency distribution in
the reads is about the same as in the real population, and hence arrives at a simpler computation at the cost
of some error. These are also useful for individual sequencing.
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• As mentioned above in Section (4.1), the document presents an approach to computing Tajima’s D based on
its variance, and extends this to windows, but (to the best of our knowledge) does not implement this, and
instead implement their approach based on Achaz (2008) [1].

• They present an approach for computing FST for J pool-sequenced populations (instead of just two as presented
above), extend this approach to large regions as well as single SNPs, and introduce weights that take the number
of sequenced individuals in each population into account. More work is needed to compare this approach to
their implementation and to our novel estimators.

These alternative approaches however need further assessment and comparison to the other approaches presented
here.
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